О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ > Полезные советы
Тысяча полезных мелочей    

О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ

О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ

Крупенин В.Л. Статья в формате PDF 105 KB

1. В работе даются модели, порождающие нелинейные и (или) сильно нелинейные волн в струнах и других одномерных объектах.

Нелинейные волновые процессы обычно моделируются при помощи нелинейных дифференциальных уравнениях в частных производных. Для нелинейных аналогов волнового уравнения имеем [1]:

utt - с2uxx=h(u,ut,ux,t,x),                      (1)

где h - нелинейная функция, структура которой определяется геометрическими и (или) физическими особенностями задачи. Раскладывая функцию h в ряд, в разных приближениях можно получать модели нелинейных волновых процессов.

Нелинейные волновые эффекты многочисленны и многообразны. Показывается, что при рассмотрении простейших нелинейных моделей проявляются такие весьма хаpaктерные и важные явления как «деформирование» и «опрокидывание» профилей волн [1].

Весьма важной моделью нелинейных волн служит нелинейное уравнение Клейна-Гордона:

utt - с2uxx=Ф(u),                               (2)

где Ф(u) - некоторая гладкая или разрывная функция, описывающая распределенные нелинейные восстанавливающие силы. Влинейном приближении Ф(u)=-ku (k>0) имеем известную модель струны «на упругой постели».

2. Весьма важную модель - модель нелинейной струны можно получить, учитывая в представлении для упругой энергии системы в первом приближении члeн, кубический по смещению [1]. Ограничиваясь рассмотрением достаточно длинных волн, можно получить дополнительные члeны уравнения движения, зависящие лишь от деформации ux , но не от ее производных. Кроме того, в первом приближении можно записать можно записать также и члeн, учитывающий дисперсию. Тогда уравнение нелинейной струны (или уравнение продольных колебаний нелинейного стержня) можно привести к виду [1]:

utt - с2(uxx+l2u4x - buxuxx )=0,                                  (3)

где c - по-прежнему скорость распространения волн в линейной модели, l - масштабный, считающийся малым, b - также малый параметр, хаpaктеризующий интенсивность нелинейных сил. Выбор положительного знака перед l2 соответствует предположению, что среда имеет отрицательную дисперсию и групповая скорость убывает с ростом волнового числа. Дисперсия в данной модели оказывается нормальной. Выбор противоположенного знака привел бы к модели, аналогичной известной модели балки Бернулли [1].

Если Ф(u) - суть сингулярная обобщенная функция описывающая условия удара, то приходим к нелинейному уравнению Клейна-Гордона, моделирующее виброударную систему с паспределенными ударными элементами. [2]..

3. Весьма интересную базовую модель дает называемое уравнение Кортевега - де Фриза, (уравнение КдФ) оказывающееся принципиальным при рассмотрении моделей нелинейных волн [1].

wt + wx+εwxxx +μwwx =0.                              (4)

Если перейти к подвижной системе координат x→x-t, то вместо (4) получим

wt +μwwx +εwxxx =0.                                    (5)

Данное уравнение также называют уравнением Кортевега - де Фриза. При замене w→ - w вместо (.14) будем иметь:

wt + wx+εwxxx -μwwx =0.                             (6)

Если продифференцировать это уравнение по t и заменить значение wt его представлением из (6), то:

wtt - wxx- 2εw4x + 2μ(wwx)x+εμ(2wwxx+0,5wx2)хх - ε2 w6x 2(w2wx)x = 0,                  (7)

то есть (3) и (7) совпадают с точностью до члeнов ~ε2 и ~μ2 . Следовательно, решения уравнения КдФ (6) точно удовлетворяют уточненному уравнению нелинейной струны (7) и приближенно исходному уравнению (3). О других примерах волновых уравнений, множество решений которого содержит решения уравнения КдФ см. например в [1].

Работа выполнена при поддержке РФФИ (проект № 04-01-00611).

СПИСОК ЛИТЕРАТУРЫ:

  1. Уизем Дж. Линейные и нелинейные волны.- М.: Наука-1997. - 622 с.
  2. Крупенин В.Л. К описанию динамических эффектов, сопровождающих колебания струн вблизи однотавровых ограничителей// ДАН. - . 2003,. № 388 (3).- С.12-15.


ИСТОРИЯ РАЗВИТИЯ ИСТИННЫХ УЧИТЕЛЕЙ

ИСТОРИЯ РАЗВИТИЯ ИСТИННЫХ УЧИТЕЛЕЙ Статья в формате PDF 104 KB...

25 04 2024 0:56:51

БИОТЕСТИРОВАНИЕ ВОДНОЙ СРЕДЫ ВОЛГО-КАСПИЯ

Анализ полученных результатов мониторинга воды Волго – Каспийского бассейна показал, что: уровень мутагенной активности загрязнений природных волжских вод достигает наибольшего значение в летний период; наиболее напряженная эколого- генетическая ситуация складывается в районах р. Бузан и г. Нариманов, находящихся в непосредственной близости от Газопереpaбатывающего завода; показатель уровня мутагенности водной среды с 1998 по 2001 г. незначительно снизился, но превышает предельно допустимое значение на 59%; сера, добываемая на АГПЗ увеличивает показатель мутагенности загрязнений на 62%; использование фильтров на основе циалита способствует снижению мутагенности природной воды на 58%, пpaктически приближая её к предельно допустимому значению 0,37%. ...

12 04 2024 17:28:43

ГЕЛИОКЛИМАТОЛОГИЯ: ВНЕЗЕМНЫЕ ИСТОЧНИКИ ЗЕМНОГО КЛИМАТА

ГЕЛИОКЛИМАТОЛОГИЯ: ВНЕЗЕМНЫЕ ИСТОЧНИКИ ЗЕМНОГО КЛИМАТА Проведен анализ поведения 380-летних изменений солнечной активности, температуры, осадков, солнечной радиации, штормистости и СО2. Обнаружена тенденция совпадения всех процессов на ветви роста 400-летних изменений. Показано, что основным фактором климатических изменений на Земле является солнечная активность. Для дальнейших сценариев существования человечества в обозримой перспективе, уже не так важно, что лежит в основе глобального повышения температуры, CO2, осадков … Теперь важно искать пути, как снизить риски глобальных климатических изменений на природу, биосферу и экономику. Важно также оценить факторы положительные экономического развития мирового сообщества в целом и России, в частности, вызванные этими изменениями. Показано, что своевременное отслеживание и прогнозирование изменения активности Солнца и вызванных ею земных явлений позволяют снижать экономические риски и выpaбатывать оптимальную стратегию для предотвращения природных катастроф. ...

09 04 2024 21:30:38

ВЛИЯНИЕ РАЗЛИЧНЫХ ДОЗ ПХБ НА МЕТАБОЛИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ЛЕЙКОЦИТОВ И ВОЗМОЖНОСТЬ КОРРЕКЦИИ НАРУШЕНИЙ ОКСИМЕТИЛУРАЦИЛОМ

ВЛИЯНИЕ РАЗЛИЧНЫХ ДОЗ ПХБ НА МЕТАБОЛИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ЛЕЙКОЦИТОВ И ВОЗМОЖНОСТЬ КОРРЕКЦИИ НАРУШЕНИЙ ОКСИМЕТИЛУРАЦИЛОМ Введение в организм белых крыс ПХБ в течение 28 суток привело к нарушениям со стороны количественного и качественного состава белой крови. При одновременном введении ПХБ и ОМУ количественные и качественные изменения лейкоцитов носили не столь выраженный хаpaктер, и концу эксперимента наблюдалось их восстановление. Таким образом, применение оксиметилурацила вызывает уменьшение токсического эффекта ПХБ на количественное и метаболическое состояние лейкоцитов периферической крови. ...

07 04 2024 20:32:16

Взаимовлияние многолетних трав в агрофитоценозах

Взаимовлияние многолетних трав в агрофитоценозах Статья в формате PDF 107 KB...

06 04 2024 11:37:24

ГЕНОФОНД ПОЧВ

ГЕНОФОНД ПОЧВ Статья в формате PDF 105 KB...

05 04 2024 10:18:29

ИПОТЕЧНЫЙ КРИЗИС В США: РЕАЛЬНОСТЬ ИЛИ МИФ

ИПОТЕЧНЫЙ КРИЗИС В США: РЕАЛЬНОСТЬ ИЛИ МИФ Статья в формате PDF 308 KB...

31 03 2024 9:27:31

НОВЫЙ ФИКСАТОР АНАТОМИЧЕСКОГО МАТЕРИАЛА

НОВЫЙ ФИКСАТОР АНАТОМИЧЕСКОГО МАТЕРИАЛА Статья в формате PDF 113 KB...

27 03 2024 6:17:50

ШУБЕРТ ЭДУАРД ЕВГЕНЬЕВИЧ

ШУБЕРТ ЭДУАРД ЕВГЕНЬЕВИЧ Статья в формате PDF 149 KB...

22 03 2024 8:26:36

Успехи и перспективы развития эмбриологии

Успехи и перспективы развития эмбриологии Статья в формате PDF 104 KB...

21 03 2024 15:32:59

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::