ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В МАССОВЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЯХ > Полезные советы
Тысяча полезных мелочей    

ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В МАССОВЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЯХ

ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В МАССОВЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЯХ

Воронкин Е.В. Бикташев Р.А. Статья в формате PDF 307 KB

Универсальные процессоры (CPU) созданы для исполнения одного потока последовательных инструкций с максимальной производительностью, а графические процессоры (GPU) проектируются для быстрого исполнения большого числа параллельно выполняемых потоков инструкций.

Для увеличения производительности CPU стараются добиться выполнения как можно большего числа инструкций параллельно. Начиная с процессоров Intel Pentium, появилось суперскалярное выполнение, обеспечивающее выполнение двух инструкций за такт. Но у параллельного выполнения последовательного потока инструкций есть определённые базовые ограничения и увеличением количества исполнительных блоков кратного увеличения скорости не добиться.

Алгоритмы, реализуемые видеочипами, обладают естественным параллелизмом. Видеочип принимает на входе группу полигонов, проводит все необходимые операции, и на выходе выдаёт пиксели. Обработка полигонов и пикселей независима, их можно обpaбатывать параллельно, отдельно друг от друга. Высокая степень параллелизма в GPU вызывает необходимость использования большого количества исполнительных блоков, которые легко загрузить, в отличие от последовательного потока инструкций для CPU. Кроме того, современные GPU также могут исполнять больше одной инструкции за такт.

В универсальных процессорах большая часть транзисторов и площади чипа идут на буферы комaнд, аппаратное предсказание ветвления и огромные объёмы внутри чиповой кэш-памяти. Все эти аппаратные блоки нужны для ускорения исполнения немногочисленных потоков комaнд. Видеочипы тратят транзисторы на массивы исполнительных блоков, разделяемую память небольшого объёма и контроллеры памяти на несколько каналов. Вышеперечисленное не ускоряет выполнение отдельных потоков, оно позволяет чипу обpaбатывать нескольких тысяч потоков, одновременно исполняющихся чипом и требующих высокой пропускной способности памяти.

CPU снижают задержки доступа к памяти при помощи кэш-памяти большого размера. Видеочипы обходят проблему задержек доступа к памяти за счет готовности исполнения тысяч потоков. В то время, когда один из потоков ожидает данных из памяти, видеочип может выполнять вычисления другого потока без ожидания и задержек. Можно сказать, что в отличие от современных универсальных CPU, видеочипы предназначены для параллельных вычислений с большим количеством арифметических операций. И значительно большее число транзисторов GPU работает по прямому назначению ‒ обработке массивов данных, а не управляет исполнением немногочисленных последовательных вычислительных потоков. На рисунке показаны соотношения объема чипа занимаемого разнообразной логикой в CPU и GPU.

Основой эффективного использования мощи GPU в научных и иных неграфических расчётах является распараллеливание алгоритмов на сотни исполнительных блоков, имеющихся в видеочипах. К примеру, множество приложений по молекулярному моделированию отлично приспособлено для расчётов на видеочипах, они требуют больших вычислительных мощностей и поэтому удобны для параллельных вычислений. А использование нескольких GPU даёт ещё больше вычислительных мощностей для решения подобных задач.

Выполнение расчётов на GPU показывает отличные результаты в алгоритмах, использующих параллельную обработку данных. При этом лучшие результаты достигаются, если отношение числа арифметических инструкций к числу обращений к памяти достаточно велико.

Области применения параллельных расчётов на GPU. Это анализ и обработка изображений и сигналов, моделирование физических процессов, выполнение финансовых расчётов, ведение баз данных, моделирование динамики газов и жидкостей, криптография, астрономия, биоинформатика, цифровое кино и телевидение, геоинформационные системы, магнитно-резонансная томография, нейросети, искусственный интеллект, анализ спутниковых данных, сейсмическая разведка.



К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА Статья в формате PDF 154 KB...

27 04 2024 3:17:43

ЭНЕРГОСБЕРЕГАЮЩАЯ ТЕХНОЛОГИЯ ВЫРАЩИВАНИЯ СОРГО В УСЛОВИЯХ АСТРАХАНСКОЙ ОБЛАСТИ

ЭНЕРГОСБЕРЕГАЮЩАЯ ТЕХНОЛОГИЯ ВЫРАЩИВАНИЯ СОРГО В УСЛОВИЯХ АСТРАХАНСКОЙ ОБЛАСТИ В обзорной статье рассмотрены основные элементы энергосберегающей технологии возделывания сорго в условиях Астpaxaнской области, к которым относятся: подготовка семян к посеву, севооборот, подбор сортов, нормы высева и способы посева, минеральные подкормки, борьба с сорными растениями и болезнями с помощью внесение гербицидов, орошение по фазам роста и развития, с помощью дождевания наименее энергозатратных агрегатов. ...

26 04 2024 3:34:19

СОБСТВЕННОСТЬ НА ЗЕМЛЮ: ИСТОРИОГРАФИЧЕСКИЙ АСПЕКТ

СОБСТВЕННОСТЬ НА ЗЕМЛЮ: ИСТОРИОГРАФИЧЕСКИЙ АСПЕКТ Статья «Собственность на землю: историографический аспект» представляет собой историографический анализ проблемы отношений собственности на землю с точки зрения различных школ экономической мысли. В ней раскрываются противоречия теории земельной собственности с современной пpaктикой землепользования. ...

25 04 2024 10:51:23

КОНФЛИКТ ПОКОЛЕНИЙ В РАССКАЗЕ М. ШОЛОХОВА «РОДИНКА»

КОНФЛИКТ ПОКОЛЕНИЙ В РАССКАЗЕ М. ШОЛОХОВА «РОДИНКА» Статья в формате PDF 311 KB...

19 04 2024 16:39:12

Колебания и волны (учебное пособие)

Колебания и волны (учебное пособие) Статья в формате PDF 303 KB...

18 04 2024 8:29:20

ЭФФЕКТИВНАЯ ОРГАНИЗАЦИЯ УЧЕТНОГО ПРОЦЕССА

ЭФФЕКТИВНАЯ ОРГАНИЗАЦИЯ УЧЕТНОГО ПРОЦЕССА Статья в формате PDF 105 KB...

12 04 2024 1:27:17

ОЦЕНКА ПЕРСПЕКТИВ РАЗВИТИЯ ЛЕСНЫХ КОМПЛЕКСОВ В РЕГИОНАХ С СИЛЬНЫМ АНТРОПОГЕННЫМ ВОЗДЕЙСТВИЕМ

ОЦЕНКА ПЕРСПЕКТИВ РАЗВИТИЯ ЛЕСНЫХ КОМПЛЕКСОВ В РЕГИОНАХ С СИЛЬНЫМ АНТРОПОГЕННЫМ ВОЗДЕЙСТВИЕМ Все более актуальной в настоящее время становится проблема прогнозирования динамики развития региональных лесных комплексов. В качестве одного из этапов исследований по этой теме автором в содружестве с Гринпис России был выполнен описанный в статье проект. В рамках проекта разработана экономико-математическая модель. Последующая реализация модели на компьютере с использованием реальных данных показала ее эффективность для решения задач прогнозирования лесной отрасли. В качестве региона для апробации модели был выбран Санкт-Петербург и область, где влияние человека на окружающую среду в последнее время существенно возросло. Проведенная на основе статистических тестов верификация модели показала ее соответствие реальности. С целью апробации модели были сформированы два сценария с различными значениями показателей внешнего воздействия на региональную систему лесного комплекса. В результате, после имитации были получены основные параметры регионального лесного комплекса, соответствующие двум сценариям. ...

08 04 2024 16:59:49

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::