ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА НЕРВНО-МЫШЕЧНОГО АППАРАТА КОСМОНАВТОВ И ИХ ИЗМЕНЕНИЯ ПОСЛЕ СЕМИСУТОЧНОГО КОСМИЧЕСКОГО ПОЛЕТА НА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ > Полезные советы
Тысяча полезных мелочей    

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА НЕРВНО-МЫШЕЧНОГО АППАРАТА КОСМОНАВТОВ И ИХ ИЗМЕНЕНИЯ ПОСЛЕ СЕМИСУТОЧНОГО КОСМИЧЕСКОГО ПОЛЕТА НА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА НЕРВНО-МЫШЕЧНОГО АППАРАТА КОСМОНАВТОВ И ИХ ИЗМЕНЕНИЯ ПОСЛЕ СЕМИСУТОЧНОГО КОСМИЧЕСКОГО ПОЛЕТА НА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ

Коряк Ю. Гидзенко Ю. Шаттлуфорт М. Залетин С. Лончаков Ю. Шаргин Ю. Статья в формате PDF 125 KB

Невесомость вызывает изменение многих жизненно важных систем и функций организма всего живого, и в том числе опopно-двигательного аппарата. Пребывание в среде с пониженной гравитационной нагрузкой сопровождается снижением тонуса и силы сокращения мышц (Какурин и др., 1971; Mitarai et al., 1980; Козловская и др., 1984; Koryak, 2002), нарушением координации движений (Ross et al., 1984; Григорьева, Козловская, 1985; Киренская и др., 1986), рефлекторных механизмов (Какурин и др., 1971; Черепахин. Первухин, 1970; Kozlovskaya et al., 1982) и суставной чувствительностью (Bock et al., 1982; Bock, 1994). Наибольшему действию микрогравитации подвергаются антигравитационные мышцы‑разгибатели бедра и стопы (Григорьева, Козловская, 1985; LeBlanc et al., 1988; Akima et al., 2002) и, особенно, подошвенный сгибатель стопы (LeBlanc et al., 1988; Akima et al., 2002), возможно из-за большей их механической разгрузки по сравнению с гравитационными условиями. Изменения функциональных свойств нервно-мышечного аппарата (НМА) в этих условиях, могут быть результатом изменений как в самих мышцах (периферический фактор), так и в системе их контроля со стороны ЦНС (центральный фактор). Из-за методологических трудностей сократительные свойства мышц у человека исследовались, главным образом, при выполнении произвольных сокращений/движений (Григорьева, Козловская, 1985; Edgerton, Roy, 1995; Lambertz et al., 2003). Изменение нейро‑мышечных функций отмечалось, как после коротких космических полетов (Козловская и др., 1988; Edgerton et al. 1995), так и продолжительных (Thornton, Rummel, 1977; Koslovskaya et al. 1984; Koryak et al., 1997; Bachl et al., 1997; Koryak, 2001). В предыдущих работах нами было показано, что продолжительный (120 суток) пocтeльный режим (Koryak, 1995, 2001; Koryak et al., 1997; Коряк, 2006) и космический полет более 120‑суток (Koryak, 2001; Коряк, 2006) существенно снижают функциональные свойства НМА. В представленной работе впервые сообщаются результаты изменений функциональных свойств НМА, на примере изменений временных и амплитудных хаpaктеристик сокращения трехглавой мышцы голени (ТМГ), развиваемой при произвольном (волевом усилии) и электрически вызванном (непроизвольном) сокращении у космонавтов после коротких миссий в составе экспедиций посещений на Международной Космической Станции (МКС).

Цель. Оценить влияние семисуточного космического полета на функциональные свойства НМА у космонавтов.

Методика. В исследовании приняли участие 5 мужчин‑космонавтов (37.8 ± 3.7 лет; 175.8 ± 1.7 см; 72.8 ± 2.8 кг), участвующих в составе экспедиций посещений МКС. Механические ответы ТМГ регистрировали тендометрическим динамометром (Коряк, 1985) методом тендометрии (Коц и др., 1976) за 30 суток до полета на 3 день после приземления. По тендограммам оценивали максимальную произвольную силу (МПС) сокращения мышцы, выполненной при условии «сократить максимально сильно», силу одиночного сокращения (Pос) и максимальную силу (Po) в ответ на электрическое раздражение n. tibialis одиночным прямоугольным импульсом или ритмическими тетаническими импульсами супрамаксимальной силы и частотой 150 имп/с, соответственно (Коряк, 1992-2006), а также время достижения пика одиночного сокращения (ВОС) и время полурасслабления (1/2 ПР). Скоростно‑силовые свойства мышцы оценивали по тендограмме развития изометрического произвольного сокращения, выполненного при условии «сократить максимально быстро и сильно». Рассчитывали время достижения напряжения до 25, 50, 75 и 90 % от МПС. Аналогично по тендограмме электрически вызванного сокращения при стимуляции n.  tibialis с частотой 150 имп/с (Коц, Коряк, 1981; Коряк, 1992), рассчитывали время, обратная величина скорости, нарастания вызванного сокращения. Для количественной оценки степени совершенства центрального (координационного) механизма управления мышечным аппаратом при произвольном движении, рассчитывали величину силового дефицита, определяемую как дельта (D, %) между Ро и МПС (Коряк, 1997; Koryak, 1995, 2006).

Результаты. После кратковременного космического полета Pос ТМГ не изменилась (-1.9 %), но МПС уменьшилась в большей степени (на 12.3 %) по сравнению с Po (на 3.2 %). Величина силового дефицита увеличилась в среднем на 11.4 %. ВОС и 1/2 RT не изменились. Анализ кривых сила-время электрически вызванных сокращений до и после полета не обнаружил существенных различий на протяжении всей кривой, тогда как скорость, или иначе градиент, развития произвольного сокращения значительно уменьшилась.

Заключение. Большие снижения силовых и скоростно-силовых свойств мышцы при ее произвольном сокращении после кратковременного космического полета, указывают на неспособность ЦНС активировать мышечный аппарат, указывая таким образом, что наблюдаемое снижение сократительных свойств НМА связано, в основном, не с изменениями свойств самого сокpaктильного аппарата мышц, а с изменениями в их центральных, координационных, механизмах управления произвольными движениями, развивающими уже на относительно раннем этапе пребывания в условиях реальной невесомости.



ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ Исследовали влияние продолжительного пребывания в условиях невесомости на механические свойства и электромеханическую задержку (ЭМЗ) трехглавой мышцы голени (ТМГ) у 7 космонавтов до полета и на 3-5 день после возвращения на Землю. Механические свойства ТМГ оценивали по показателям максимальной произвольной силы (МПС), максимальной силы (Ро; частота 150 имп/с), силы одиночного сокращения (Рос), времени одиночного сокращения (ВОС), времени полурасслабления (1/2 ПР), времени развития напряжения до уровня 25, 50, 75 и 90% от максимума. Рассчитывали силовой дефицит (Рд) и тетанический индекс (ТИ). ЭМЗ регистрировали во время произвольного и непроизвольного сокращения ТМГ. В ответ на световой сигнал космонавт выполнял произвольное подошвенное сгибание при условии «сократить как можно быстро и сильно». Определяли общее время реакции (ОВР), премоторное время (ПМВ) и моторное время (МТ) или иначе ЭМЗ. В ответ на супрамаксимальный одиночный электрический импульс, приложенный к n. tibialis, определяли латентный период между М-ответом и началом развития Рос. После полета Рос, МПС и Ро уменьшились на 14,8; 41,7 и 25.6%, соответственно. Величина Рд и ТИ увеличилась на 49,7 и 46,7%, соответственно. ВОС увеличилось на 7,7%, а время 1/2 ПР уменьшилось – на 20,6%. Время развития произвольного изометрического сокращения значительно увеличилось, тогда как электрически вызванное сокращение не обнаружило существенных различий. ЭМЗ произвольного сокращения увеличилась на 34,1%, а ПМВ и ОВР уменьшились на 19,0 и 14,1%, соответственно. ЭМЗ электрически вызванного сокращения существенно не изменилось. Таким образом, механические изменения предполагают, что невесомость изменяет не только периферические процессы, связанные с сокращениями, но изменяет также и центрально-нервную комaнду. ЭМЗ при вызванном одиночном сокращении простой и быстрый метод оценки изменения жесткости мышцы. Более того, ЭМЗ при вызванном одиночном сокращении мышцы может служить показателем функционального состояния нервно-мышечного аппарата, а соотношение ЭМЗ при произвольном и вызванном сокращениях показателем функционального состояния центральной нервной системы. ...

01 05 2024 6:58:41

Деринат-отечественный природный иммуномодулятор

Деринат-отечественный природный иммуномодулятор Статья в формате PDF 109 KB...

23 04 2024 4:58:38

СОТВОРИ МЕЧТУ – МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ

СОТВОРИ МЕЧТУ – МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ Статья в формате PDF 267 KB...

20 04 2024 22:23:25

ПЕРСПЕКТИВНЫЙ СПОСОБ НЕРЕСТА КАРПА В САДКАХ

ПЕРСПЕКТИВНЫЙ СПОСОБ НЕРЕСТА КАРПА В САДКАХ Статья в формате PDF 107 KB...

19 04 2024 13:38:42

АУДИТ ТУРИСТСКИХ ОРГАНИЗАЦИЙ (учебное пособие)

АУДИТ ТУРИСТСКИХ ОРГАНИЗАЦИЙ (учебное пособие) Статья в формате PDF 107 KB...

17 04 2024 22:54:10

СЛЕПЦОВ ОЛЕГ ИВКЕНТЬЕВИЧ

СЛЕПЦОВ ОЛЕГ ИВКЕНТЬЕВИЧ Статья в формате PDF 325 KB...

15 04 2024 4:45:11

АНАЛОГОВОЕ ПРЕДСТАВЛЕНИЕ ЭЛЕМЕНТАРНЫХ ЗВЕНЬЕВ ДНК

АНАЛОГОВОЕ ПРЕДСТАВЛЕНИЕ ЭЛЕМЕНТАРНЫХ ЗВЕНЬЕВ ДНК Статья в формате PDF 101 KB...

11 04 2024 23:48:52

FORMATION AND FUNCTIONING OF URBAN ENVIRONMENTAL COMPLEX IN THE EUROPEAN NORTH

FORMATION AND FUNCTIONING OF URBAN ENVIRONMENTAL COMPLEX IN THE EUROPEAN NORTH Статья в формате PDF 122 KB...

04 04 2024 21:48:52

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::