ПАРАЛЛЕЛЬНЫЕ ЯВНЫЕ ОДНОШАГОВЫЕ МЕТОДЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ > Полезные советы
Тысяча полезных мелочей    

ПАРАЛЛЕЛЬНЫЕ ЯВНЫЕ ОДНОШАГОВЫЕ МЕТОДЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ПАРАЛЛЕЛЬНЫЕ ЯВНЫЕ ОДНОШАГОВЫЕ МЕТОДЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Ващенко Г.В. Статья в формате PDF 251 KB

Предложены параллельные явные одношаговые методы первого, второго порядков, обеспечивающие возможность с минимальными вычислительными затратами интегрировать жесткие системы обыкновенных дифференциальных уравнений. В предлагаемых параллельных алгоритмах изменение величины шага построены на основе контроля точности и устойчивости численной схемы, а в неравенстве для контроля точности применяется оценка локальной ошибки метода.

В настоящее время одним из основных параметром, хаpaктеризующих эффективность использования вычислительной техники в науке и технологии, являются математические модели и численные методы, применяемые при создании программ для реализации исследований и расчетов по этим моделям. Моделирование процессов во многие важных приложениях приводит к необходимости численного решения задачи Коши для умеренно жестких систем обыкновенных дифференциальных уравнений [2, 3].

Рассматривается задача Коши для автономной системы обыкновенных дифференциаль ных уравнений первого порядка

y′ = f(y), y(t0) = y0, t0 ≤ t ≤ tk (1)

где y: [t0, tk] →RN, f: [t0, tk]× RN →RN, [t0, tk] -отрезок интегрирования. В предположении существования и единственности решения задачи (1) параллельная схема метода первого порядка с контролем точности для численного решения (1) в вычислительной системе из p процессоров, N > p и s = N/p, если N кратно p, или s = [N/p] + g, в противном случае, записывается в виде [1]

 (2)

где yjs(n) ∈ Comp(j), || δn ||= 0.5h || fn + 1 - fn || ≤ ε, 1 ≤ j ≤ p, (j-1)⋅s + 1 ≤ js ≤ j⋅ s, ||⋅|| - некоторая норма в RN , || δn ||- норма вектора локальной погрешности, fn + 1 и fn - значения правой части системы (1) соответственно в точках t n+1 и tn, ε требуемая точность. Параллельная схема второго порядка для численного решения (1) имеет вид

 (3)

Неравенство для оценки устойчивости h | λmax |≤ D, где | λmax | -наибольшее собственное число якобиана, D - размер области устойчивости (для схемы (3) он равен 2). Выбор величины шага hn для схемы (2) определяется по формуле hn = qhn/1.1, где q = (ε /|| δn ||)1/2, а для схемы (3) по формуле hn = max(hn, qhn)/1.1, где q = (D / hnmax | )1/2 .

Укрупненная схема параллельных алгоритмов предложенных вычислительных схем (2), (3) состоит в следующем. Компоненты yjs(n) распределяются по p процессорам согласно блочной схеме распределения по s компонентов в каждом. Каждая задача Uj выполняется на proc(j), Uj ∈ proc(j). Proc(1) определяет значение шага hn и передает всем proc(j), используя коммуникационную операцию one-to- all. В каждом proc(j) вычисляются yjs(n), т.е. решается задача Uj, вычисляется значение локальной нормы || δn ||j и выполняется операция all-to-all. Для вычисления значений элементов fjs(y(n) ) вектора правой части разpaбатывается отдель ная функция. Таким образом, общая схема параллельного алгоритма сводится к линейной форме и обеспечивается возможность анализа и оценки его эффективности алгоритма.

Алгоритмы реализованы в виде отдельных функций языка С и включены в комплекс программ, предназначенных для численного моделирования процессов, описываемых жесткими системами на многопроцессорных вычислительных системах кластерной архитектуры. Коммуникационные операции реализованы функциями библиотеки MPI.

Расчеты, выполняемые на 99-процессорном кластере ИВМ СО РАН [4] показали, что параллельные схемы (2), (3) применяться в случаях, когда расчеты требуется проводить с невысокой точностью - порядка 1 % и ниже.

Список литературы

  1. Ващенко Г.В., Новиков Е.А. Параллельная реализация явных методов типа Рунге-Кутты // Вестник КрасГАУ. - 2010 - №2 - С. 14-18.
  2. Новиков Е.А. Явные методы для жестких систем. - Новосибирск: Наука, 1997.
  3. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. - М.: Мир, 1999.
  4. Исаев С.В., Малышев А.В., Шайдуров В.В. Развитие Красноярского центра параллельных вычислений // Вычислительные технологии. - 2006. - №11. - С. 28-33.


ЗДОРОВЬЕ И ОБРАЗОВАНИЕ СЕГОДНЯ

Образование и здоровье: сочетание этих понятий наполнено нравственным, социальным, политическим и экономическим смыслом. Здоровье для России должно стать зеркалом жизни, воспитания и образования, быть высшей ценностью государства ...

26 04 2024 16:57:42

НОВЫЕ ГЕРОПРОТЕКТОРЫ AGEXPERT MALE И AGEXPERT FEMALE

НОВЫЕ ГЕРОПРОТЕКТОРЫ AGEXPERT MALE И AGEXPERT FEMALE Статья в формате PDF 104 KB...

25 04 2024 6:21:37

АГРЕГАЦИЯ ТРОМБОЦИТОВ ПРИ ЛЕПТОСПИРОЗЕ

АГРЕГАЦИЯ ТРОМБОЦИТОВ ПРИ ЛЕПТОСПИРОЗЕ Статья в формате PDF 121 KB...

22 04 2024 14:31:23

МОДЕЛИРОВАНИЕ КВАЗИФРАКТАЛЬНЫХ КОНФИГУРАЦИЙ МЕЖФАЗНЫХ ГРАНИЦ МЕТОДОМ ИТЕРАЦИИ ПРЯМОУГОЛЬНЫХ ГЕНЕРАТОРОВ НА 2D СЕТКАХ

МОДЕЛИРОВАНИЕ КВАЗИФРАКТАЛЬНЫХ КОНФИГУРАЦИЙ МЕЖФАЗНЫХ ГРАНИЦ МЕТОДОМ ИТЕРАЦИИ ПРЯМОУГОЛЬНЫХ ГЕНЕРАТОРОВ НА 2D СЕТКАХ Обсуждены методика и некоторые результаты моделирования вероятных конфигураций межфазных границ на поверхности композиционных материалов, полученные методом итерации прямоугольных генераторов на определенных сетках Кеплера-Шубникова. ...

21 04 2024 6:42:40

СПЕЦИФИКА ДЕМОГРАФИЧЕСКОЙ И СЕМЕЙНОЙ ПОЛИТИКИ В КАБАРДИНО-БАЛКАРСКОЙ РЕСПУБЛИКЕ

СПЕЦИФИКА ДЕМОГРАФИЧЕСКОЙ И СЕМЕЙНОЙ ПОЛИТИКИ В КАБАРДИНО-БАЛКАРСКОЙ РЕСПУБЛИКЕ В статье авторами рассмотрены региональные особенности демографической и семейной политики. ...

14 04 2024 1:19:12

УЧЕНИЕ О НООСФЕРЕ И ТЕОРИЯ МИКСТОВОГО ФАКТОРА

УЧЕНИЕ О НООСФЕРЕ И ТЕОРИЯ МИКСТОВОГО ФАКТОРА Статья в формате PDF 310 KB...

10 04 2024 16:21:44

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I)

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I) С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные хаpaктеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции. ...

06 04 2024 13:54:49

РОЛЬ ЗАНЯТИЙ БАСКЕТБОЛОМ В ФОРМИРОВАНИИ ЛИЧНОСТИ

РОЛЬ ЗАНЯТИЙ БАСКЕТБОЛОМ В ФОРМИРОВАНИИ ЛИЧНОСТИ Статья в формате PDF 326 KB...

29 03 2024 13:50:23

Разработка варочного котла непрерывного действия

Разработка варочного котла непрерывного действия Статья в формате PDF 415 KB...

22 03 2024 20:17:37

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::