СИММЕТРИЯ ПАРАМЕТРА ПОРЯДКА ФАЗОВОГО ПЕРЕХОДА Fd3m → P213 В ШПИНЕЛИ LiZn0,5Mn1,5O4 > Полезные советы
Тысяча полезных мелочей    

СИММЕТРИЯ ПАРАМЕТРА ПОРЯДКА ФАЗОВОГО ПЕРЕХОДА Fd3m → P213 В ШПИНЕЛИ LiZn0,5Mn1,5O4

СИММЕТРИЯ ПАРАМЕТРА ПОРЯДКА ФАЗОВОГО ПЕРЕХОДА Fd3m → P213 В ШПИНЕЛИ LiZn0,5Mn1,5O4

Таланов В.М. Широков В.Б. Статья в формате PDF 298 KB

Одним из наиболее эффективных катодных материалов для литиевых источников тока является LiCoO2, позволяющий получать напряжение 4 вольта. По сравнению с этим катодным материалом литий марганцевая шпинель LixMn2O4 представляется еще более привлекательной, так как этот материал более дешевый и нетоксич- ный [1]. Интеркаляция лития происходит при 3 В в интервале концентраций лития 1 ≤ x ≤ 2, но при этом происходит значительное ухудшение циклируемости материала из-за структурных изменений (превращения кубической шпинели LiMn2O4 в тетрагональную Li2Mn2O4 в процессах заряда и разряда), обусловленных кооперативным эффектом Яна-Теллера [2, 3]. Этот эффект наблюдается, в частности, в веществах, содержащих Mn(III). Тетрагональное искажение шпинели влияет на геометрию трехмерных путей движения ионов Li+. Поэтому, искажение Яна-Теллера - одна из самых важных причин, обусловливающих исчезновение электрохимической активности шпинели LiMn2O4 [4].

Кубическая литий марганцевая шпинель позволяет получать и более высокое напряжение 4 В при содержании лития 0 ≤ x ≤ 1, если она не претерпевает структурных изменений, оставаясь при циклировании в кубической фазе [1]. Поэтому предпринимались многочисленные попытки подавить фазовый переход и стабилизировать кубическую фазу, вводя различные добавки (например, M = Ni, Сu, Zn, Co, Cr, Al, Мn и др.) [1, 5-10 и др.]. Эти катионы могут занимать как тетраэдрические позиции в структуре шпинели (например, Zn, Mg), так и октаэдрические (например, Co, Cr). Для некоторых составов при определенных условиях синтеза замещение катионов сопровождается их упорядочением. Так, например, в шпинели LiMg0.5Mn1.5O4 рентгеноструктурным исследованием было установлено упорядочение катионов Mg и Mn в октаэдрических позициях, приводящее к понижению симметрии кристалла до P4332 [11-13]. Такой же тип упорядочения катионов Ni и Mn в октаэдрических позициях отмечается и в шпинели LiNi0,5Mn1,5O4 [14]. Необычное упорядочение катионов предложено для LiZn0,5Mn1,5O4 [14]. В этом веществе атомы Zn находятся в тетраэдрических узлах (круглые скобки), а Mn - в октаэдрических позициях (квадратные скобки); структурная формула имеет вид: (Li0,5Zn0,5)[Li0.5Mn1,5]O4.

Три схемы упорядочения катионов были предложены в предыдущих работах для шпинели LiZn0,5Mn1,5O4 [1]. В зависимости от условий получения образцов неупорядоченная шпинельная фаза с прострaнcтвенной симметрией Fd3m наблюдалась в материалах, полученных при 750°C, упорядоченная структура с энантиоморфными прострaнcтвенными группами P4332 и P4132 наблюдалась в материалах, полученных при 600°C и структура с катионным порядком в тетраэдрических и октаэдрических позициях и прострaнcтвенной группой P213 наблюдалась в медленно охлажденных материалах. Именно эта структура является равновесной и изучается в данной работе.

Используя результаты теоретико-группового анализа фазовых превращений, происходящих по одному критическому неприводимому представлению (НП) в группе Fd3m [15-17], получим, что прострaнcтвенная группа P213 (T4) может быть индуцирована четырьмя различными представлениями группы Fd3m:

  • шестимерным НП k104), стационарный вектор (η 0 η 0 η 0),
  • двенадцатимерным НП k81), стационарный вектор (0 0 0 0 0 0 η -η η -η η -η),
  • двенадцатимерным НП k82), стационарный вектор (0 0 0 0 0 0 η -η η -η η -η),
  • пересечением шестимерного НП k103), по которому преобразуется шестикомпонентный параметр порядка и одномерного НП k114), по которому преобразуется однокомпонентный параметр порядка ζ (стационарный вектор (η 0 -η 0 -η 0 ζ)). Обозначения НП даны по-Ковалеву [18].

Сопоставляя теоретические результаты расчета расслоения ПСТ группы Fd3m в результате фазового превращения по соответствующему критическому представлению с экспериментальными данными, полученными с помощью рентгеноструктурного анализа и нейтронографии [1, 19, 20], однозначно установим симметрию параметра порядка (ПП): ПП состоит из двух неприводимых представлений: шестикомпонентного, связанного с НП Fd3m-k103), и однокомпонентного k114) (τ4 = A2u). Эти НП образуют точечную группу 192 порядка в семимерном прострaнcтве. Tрaнcформационные свойства ПП задаются следующими матрицами генераторов:

(1)

Здесь матрицы шестимерного представления выделены отдельной строкой, в столбец записана главная диагональ. Симметрия (1) допускает 24 низкосимметричные фазы.

Список литературы

  1. Lee Y.J., Park S.H., Eng C., Parise J.B., Grey C.P. Cation Ordering and Electrochemical Properties of the Cathode Materials LiZnxMn2-xO4, 0 < x < 0.5: A 6Li Magic-Angle Spinning NMR Spectroscopy and Diffraction Study // Chem. Mater. - 2002. - Vol. 14. -P. 194-205.
  2. Езикян В.И., Ерейская Г.П., Ходарев О.Н., Таланов В.М. Электрохимическое и структурное исследование обратимости литиймарганцевых шпинелей в апротонных электролитах // Электрохимия. - 1988. - T. 24, Вып. 12. - C. 1599-1604.
  3. Таланов В.М. Структурный механизм тетрагонального ян-теллеровского искажения шпинелей // Изв. АН СССР. Неорган. материалы. - 1989. - T. 25, №6. - C. 1001-1005.
  4. Chung K.Y., Ryu C.-W., Kim K.-B. Onset mechanism of Jahn-Teller distortion in 4 V LiMn2O 4 and its suppression by LiM0.05Mn1.95O 4(M = Co, Ni) coating // J. Electrochem. Soc. - 2005. - Vol.152, №4. - A791-A795.
  5. Wakihara M. Lithium Manganese Oxides with Spinel Structure and Their Cathode Properties for Lithium Ion Battery // Electrochemistry. - 2005. - Vol. 73. - P. 328-335.
  6. Kim K.J., Lee J.H. Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films // Solid State Commun. - 2007. - Vol. 141. - P. 99-103.
  7. Molenda J., Palubiak D., Marzec J. Transport and electrochemical properties of the LiyCrxMn2-xO4 (0 < x < 0.5) cathode material // J. Power Sources. - 2005. - Vol. 144. - P. 176-182.
  8. Wolska E., Tovar M., Andrzejewski B., Nowicki W., Darul J., Piszora P., Knapp M. Structural and magnetic properties of the iron substituted lithium-manganese spinel oxides // Solid State Sci. - 2006. - Vol. 8. - P. 31-36.
  9. Takahashi M., Yoshida T., Ichikawa A., Kitoh K., Katsukawa H., Zhang Q., Yoshio M. Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries // Electrochim. Acta. - 2006. - Vol. 51. - P. 5508-5514.
  10. Alcántara R, Jaraba M, Lavela P, J.M. Lloris J.M., Vicente C. Pérez, Tirado J. L. Synergistic Effects of Double Substitution in LiNi0.5-yFeyMn1.5O4 Spinel as 5 V Cathode Materials // J. Electrochem. Soc. - 2005. - Vol. 152, Issue 1. - P. A13-A18.
  11. Strobel P., Palos A.I., Anne M., Le-Cras F. Structural, magnetic and lithium insertion properties of spinel-type Li2Mn3MO8 oxides (M = Mg, Co, Ni, Cu) // J. Mater. Chem. - 2000. - Vol.10. - P. 429-436.
  12. Hayashi N.; Ikuta H.; Wakihara M. Cathode of LiMgyMn2-yO4 and LiMgyMn2-yO4-d Spinel Phases for Lithium Secondary Batteies // J. Electrochem. Soc. - 1999. - Vol. 146(4). - P. 1351-1354.
  13. Blasse, G. The structure of some new mixed metal oxides containing lithium (II) // J. Inorg. Nucl. Chem. - 1964. - Vol. 26. - P. 1473-1474.
  14. Santhanam R., Rambabu B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material // Journal of Power Sources. - 2010. - Vol.195. - P. 5442-5451.
  15. Сахненко В.П., Таланов В.М., Чечин Г.М. Возможные фазовые переходы и атомные смещения в кристаллах с прострaнcтвенной группой Оh7 / Редкол. журн. Изв. вузов. Физика. - Томск, 1982. - 25 с. - Деп. в ВИНИТИ 11.02.82, №638-82.
  16. Сахненко В.П., Таланов В.М., Чечин Г.М. Возможные фазовые переходы и атомные смещения в кристаллах с прострaнcтвенной группой Оh7. 2. Анализ механического и перестановочного представлений / редкол. журн. Изв. вузов. Физика. - Томск, 1983. - 62 с. - Деп. в ВИНИТИ 30.11.83, - №6379-83.
  17. Сахненко В.П., Таланов В.М., Чечин Г.М. Теоретико-групповой анализ полного конденсата, возникающего при структурных фазовых переходах // Физика металлов и металловедение. - 1986. - T. 62, Вып. 5. - C. 847-856.
  18. Ковалев О.В. Неприводимые представления прострaнcтвенных групп. - Киев: Издательство АН УССР. 1961 - 155 с.
  19. Joubert J.C., Durif A. Etude de deux types d´ordre dans le spinelle Mn3Li2ZnO8 // C. R. Acad. Sci. - 1964. - Vol. 258. - P. 4482-4485.
  20. Chen J., Greenblatt M., Waszczak J. V.. Lithium insertion compounds of LiFe5O8, Li2FeMn3O8, and Li2ZnMn3O8 // Journal of Solid State Chemistry. - 1986. - Vol. 64, Issue 3. - P. 240-248.


Состояние лесных сообществ дереворазрушающих грибов в районе падения отделяющихся частей paкет-носителей (Северный Урал)

Состояние лесных сообществ дереворазрушающих грибов в районе падения отделяющихся частей paкет-носителей (Северный Урал) В районе падения отделяющихся частей paкет-носителей и возможного загрязнения нефтепродуктами изучены основные хаpaктеристики и особенности организации лесных сообществ дереворазрушающих грибов в высотно-поясном градиенте. ...

19 04 2024 14:23:49

К ВОПРОСУ О ПЕДАГОГИЧЕСКОЙ ПОДДЕРЖКЕ ОДАРЕННЫХ ДЕТЕЙ И СРЕДСТВАХ РАЗВИТИЯ ОДАРЕННОСТИ

К ВОПРОСУ О ПЕДАГОГИЧЕСКОЙ ПОДДЕРЖКЕ ОДАРЕННЫХ ДЕТЕЙ И СРЕДСТВАХ РАЗВИТИЯ ОДАРЕННОСТИ Основная задача при работе с одаренными детьми заключается в том, чтобы поддержать в ребенке стремление к освоению высших ценностей, создать условия, в которых ребенок сможет строить свою личность самостоятельно, накапливать индивидуальный познавательный опыт. Физика наряду с другими фундаментальными науками дает возможность развивать творческие способности учащихся, навыки системного мышления. ...

24 03 2024 11:23:19

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::