К МЕТОДИКЕ ТЕОРЕТИЧЕСКОГО ПОСТРОЕНИЯ СПЕКТРА ИЗЛУЧЕНИЯ ЛЮМИНОФОРА > Полезные советы
Тысяча полезных мелочей    

К МЕТОДИКЕ ТЕОРЕТИЧЕСКОГО ПОСТРОЕНИЯ СПЕКТРА ИЗЛУЧЕНИЯ ЛЮМИНОФОРА

К МЕТОДИКЕ ТЕОРЕТИЧЕСКОГО ПОСТРОЕНИЯ СПЕКТРА ИЗЛУЧЕНИЯ ЛЮМИНОФОРА

Мордюк В.С. Горюнов В.А. Золотков В.Д. Тихонова Н.П. Маскинсков Д.В. Статья в формате PDF 147 KB

Введение

Не может вызывать споров утверждение о том, что расширенный спектр излучения люминофора обусловлен влиянием внутренних напряжений, локализующихся в области энергоемких структурных дефектов - дислокаций. Возбуждение люминесценции в люминесцентных лампах осуществляется ультрафиолетовым излучением, частичная потеря их энергии происходит на структурных дефектах люминофора. Физическая причина расширения спектра заключается только в том, что поля внутренних напряжений вокруг дислокаций обуславливают изменения ширины запрещенной полосы, изменение энергетических уровней и возможных переходов оптических электронов [1]. Соответственно изменению ширины запрещенной полосы изменяются межуровневые энергетические переходы между стабильными и возмущенными уровнями активаторных центров свечения. При этом изменяются как вероятности актов возбуждения, так и величины энергий излучаемых квантов, которые поддаются расчетным оценкам. В настоящем сообщении предлагается способ расчетного построения спектра излучения люминофора (галофосфата кальция), для которого необходимо знание только положение максимумов излучения каждого из соактиваторов сурьмы и марганца и данных расчетных оценок ширины запрещенной полосы и межуровневых энергетических переходов электронов указанных центров излучения.

Теоретическая база построения расчетного спектра излучения

Ширина запрещенной полосы галофосфатного люминофора в бездефектной области Е0 составляет 8 eV [2]. Ее изменение в области локализации дислокаций δЕД расчитавается по известной формуле Ансельма, основанной на теории деформационного потенциала [2]:

δЕД = Е0 ± Е1(b/r) Cos ө;                                                (1)

где (b/r) Cos ө - величина дилатации в области локализации дефекта, b - вектор Бюргерса дислокации, принимаемый равным параметру решетки галофосфатного люминофора 1·10-9 м, r - расстояние до места в решетке, где оценивается величина δЕД, ө - величина угла между положительным направлением экстраплоскости дислокации и направлением радиус-вектора в точку расчета δЕД. Величина Е1 по Ансельму хаpaктеризуется, как энергия взаимодействия электрона с колебаниями решетки и имеет вид:

Е1 = (h2/4π2)/(3ma2);                                                         (2)

В (2) h - постоянная Планка, m - масса электрона, a- по Ансельму уже величина параметра кристаллической решетки. В отношении последней величины мы посчитали верным уточнение следующего порядка. Поскольку Е1 определяет взаимодействие электрона с колебаниями решетки, то верным будет в (2) проставлять не параметр решетки, а величину средней амплитуды колебаний L, поскольку только амплитуда колебаний определяет энергию колебаний. По результатам сравнения зависимости от расстояния до дефекта величины δЕД и величины напряжения от дислокации σ, можно показать, что средняя амплитуда колебаний для данного люминофора может быть принята равной L = 0,001a.

Методика построения теоретического спектра излучения

Поскольку составляющие сурьмяная и марганцевая полосы уширенного экспериментально измеренного спектра симметричны относительно максимумов излучения, можно принять распределение интенсивности в них соответствующим функции Гаусса. Энергия кванта излучения cвязана с длиной волны соотношением:

hν =hс/λ;                                                                     (3)

где ν - частота световых колебаний, а с - скорость света. От положения длины волны λ0 каждого из соактиваторов сурьмы и марганца влево и вправо на расстояние δλi = 10 нм последовательно находим величины новых квантов ()i = ()0 ± (δ)i, где ()0 - величина кванта, соответствующая положению максимума излучения λ0. В связи с тем, что длина волны при этом изменяется, каждая следующая величина ()i будет все больше изменятьться на каждое новое значение (δ)i по отношению к значению ()0 и будет равна каждому новому измененному значению межуровневого расстояния между энергиями стабильного и возмущенного уровней соактиваторов Sb и Mn. Эти новые межуровневые расстояния увеличиваются (уменьшаются) пропорционально изменению ширины запрещенной полосы по выражению (1), поэтому легко поддаются количественной оценке. Но с изменением межуровневого расстояния и все большим изменением расстояния между возмущенным и стабильным уровнями при постоянной величине кванта возбуждающего ультрафиолетового излучения резко снижается вероятность осуществления актов возбуждения центров свечения pi, поскольку кванту ультрафиолета все труднее «доставать» удаляющийся верхний уровень энергии, или все легче «перебрасыватся» в зону проводимости. По аналогии с другими энергоактивируемыми процессами [4] (диффузией, испарением и пр.) для величины вероятности свершения актов возбуждения и излучения pi можно записать:

pi =exp(-()i2/()02);                                                        (4)

Величину относительной интенсивности излучения определим через произведение числа переходов на вероятность излучательной рекомбинации:

Jотн = С·(hν)0·exp(-()i2/()02));                                    (5)

где С - концентрация каждого из соактиваторов в процентах.

Обсуждение результатов расчетных оценок

Сопоставление экспериментально полученной с помощью спектроскопических измерений [2] и расчетным путем построенной с ипользованием уточненной формулы Ансельма спектральных полос излучения галофосфатного люминофора с активаторными центрами свечения Sb и Mn позволяет высказать следующие замечания.

Предлагаемая методика позволяет получать принципиальную возможность расчетного построения спектра излучения при условии надежных данных относительно концентрации активаторов и аналитической формы распределения интенсивности линий спектра. На начальном этапе этих исследований не следует ожидать точного совпадения экспериментальной и расчетной полос излучения люминесценции. Расчетный спектр может оказаться существенно более измененным по отношению к экспериментальному и это возможно по нескольким причинам. Пока невозможно учесть все факторы, которые влияют на параметры спектров и, прежде всего, на соотношение максимумов излучения соактиваторов сурьмы и марганца. По данным работы Гугеля [2] на спектр излучения оказывает существенное влияние не только соотношение концентраций соактиваторов Sb и Mn, но и соотношение входящих в химическую формулу люминофора ионов галогенов фтора и хлора и даже примесных фаз. Кроме того, на форму расширенного спектра существенное влияние оказывает плотность дислокаций и хаpaктер их распределения в решетке люминофора. Возможны и другие причины.

СПИСОК ЛИТЕРАТУРЫ

  1. Никитенко В.И., Осипьян Ю.А. Влияние дислокаций на оптические, электрические и магнитные свойства кристаллов. Проблемы современной кристаллографии. «Наука». 1975.- С. 239-261.
  2. Гугель Б.М. Люминофоры для электровакуумной промышленности. М.: «Энергия»,1967.- 344 с.
  3. Ансельм А.П. Введение в теорию полупроводников. М.:Мир.1972. -386с.
  4. Герцрикен С.Д., Дехтяр И.Я. Диффузия в металлах и сплавах в твердой фазе. М.: «Физматгиз».- 1960.- 564 с.


УЧЕБНЫЕ ИССЛЕДОВАНИЯ ГРАВИТАЦИИ (Ч. II)

УЧЕБНЫЕ ИССЛЕДОВАНИЯ ГРАВИТАЦИИ (Ч. II) В отличие от традиционного, показан иной путь интегрирования для получения уравнения напряженности гравитационного поля в точке на удалении от модельного однородного шарообразного тела. Доказано его соответствие закону всемирного тяготения при проведении компьютерного суммирования. Обнаружено наличие максимального вклада элементов шарообразного тела в величину напряженности гравитационного поля в исследуемой точке вне этого тела. Получена аналитическая зависимость глубины положения этих элементов внутри шарообразного тела от высоты исследуемой точки над поверхностью тела и его радиуса. ...

25 04 2024 9:29:58

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ БОРТОВОЙ АППАРАТУРЫ АВТОМАТИЧЕСКИХ КА И ВЫРАБОТКИ РЕКОМЕНДАЦИЙ ПО УСТРАНЕНИЮ НЕШТАТНЫХ СИТУАЦИЙ

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ БОРТОВОЙ АППАРАТУРЫ АВТОМАТИЧЕСКИХ КА И ВЫРАБОТКИ РЕКОМЕНДАЦИЙ ПО УСТРАНЕНИЮ НЕШТАТНЫХ СИТУАЦИЙ При управлении автоматическими космическими аппаратами (КА) важной проблемой является обеспечение надежного и оперативного анализа и диагностирования работоспособности бортовых систем. Это позволит своевременно выявить негативные тенденции в работе бортовой аппаратуры и предотвратить их развитие. Наибольшую актуальность проблема приобретает при управлении КА со сложными бортовыми системами, хаpaктеризующимися большим объемом телеметрических параметров, а так же при необходимости выдачи комaндных воздействий непосредственно в сеансах связи. Существующий опыт управления КА показывает, что в ряде случаев только своевременная выдача комaнд немедленного исполнения позволила обеспечить выполнение программы полета КА [1]. В настоящей работе предлагается общий подход к решению указанной проблемы, основанный на создании адекватных моделей анализа и диагностики функционирования бортовых систем и алгоритмов автоматизированной выработки рекомендаций по воздействию на КА. Ожидается, что использование в пpaктике управления таких моделей и алгоритмов даст возможность существенно повысить эффективность работы аппаратуры, в том числе за счет оперативного устранения возникающих на борту нештатных ситуаций. ...

24 04 2024 20:39:21

КЛАСТЕРНАЯ ТЕОРИЯ ТЕПЛОЕМКОСТИ ГАЗОВ

КЛАСТЕРНАЯ ТЕОРИЯ ТЕПЛОЕМКОСТИ ГАЗОВ Статья в формате PDF 128 KB...

17 04 2024 10:52:28

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ В статье даются разъяснения к применению зависимости коэффициента интенсивности нагрева (kи.н) металла от тока электрода с целью обеспечения оптимальных электрических и технологических показателей работы электропечных агрегатов для случаев экранированного и неэкранированного горения дуг. Представлено соспоставление скорости нагрева металла и kи.н для двух указанных случаев. ...

15 04 2024 20:10:33

НЕЗАВИТИН АНАТОЛИЙ ГРИГОРЬЕВИЧ

НЕЗАВИТИН АНАТОЛИЙ ГРИГОРЬЕВИЧ Статья в формате PDF 359 KB...

13 04 2024 23:16:59

ДИЕТИЧЕСКИЕ ПРОДУКТЫ ПИТАНИЯ – ОСНОВА ЗДОРОВЬЯ

ДИЕТИЧЕСКИЕ ПРОДУКТЫ ПИТАНИЯ – ОСНОВА ЗДОРОВЬЯ Статья в формате PDF 284 KB...

10 04 2024 0:38:33

ФАКТОРЫ РИСКА РАЗВИТИЯ ИНТЕЛЛЕКТУАЛЬНЫХ СПОСОБНОСТЕЙ ОДАРЁННЫХ ДЕТЕЙ

ФАКТОРЫ РИСКА РАЗВИТИЯ ИНТЕЛЛЕКТУАЛЬНЫХ СПОСОБНОСТЕЙ ОДАРЁННЫХ  ДЕТЕЙ В рамках решения задачи развития интеллектуальных способностей одарённых детей сегодня отчётливо просматриваются факторы риска. Значимыми факторами риска являются неудовлетворение потребностей определённых групп детей в питании, распространение среди подрастающего поколения вредных привычек, стресс, изменяющиеся условия окружающей природной среды. ...

05 04 2024 20:36:13

ЛОМОВ ЮРИЙ МИХАЙЛОВИЧ

ЛОМОВ ЮРИЙ МИХАЙЛОВИЧ Статья в формате PDF 115 KB...

02 04 2024 11:30:14

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В МАРКЕТИНГЕ

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В МАРКЕТИНГЕ Статья в формате PDF 316 KB...

28 03 2024 10:10:42

Методологические развитие мышление и творчество студентов на медицинском факультете

Методологические развитие мышление и творчество студентов на медицинском факультете Обсуждаются современные методологические аспекты использования активных методов обучения студентов в развитие мышление и творчество. ...

26 03 2024 23:47:50

СТУПЕНЧАТЫЕ ПРЕДСТАВЛЕНИЯ НА ГРАФАХ

СТУПЕНЧАТЫЕ ПРЕДСТАВЛЕНИЯ НА ГРАФАХ Статья в формате PDF 127 KB...

20 03 2024 1:23:48

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::