ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ > Полезные советы
Тысяча полезных мелочей    

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ

Шпиганович А.Н. 1 Ищенко А.Е. 1
1 ФБГОУ ВПО «Липецкий государственный технический университет»
В статье даются разъяснения к применению зависимости коэффициента интенсивности нагрева (kи.н) металла от тока электрода с целью обеспечения оптимальных электрических и технологических показателей работы электропечных агрегатов для случаев экранированного и неэкранированного горения дуг. Представлено соспоставление скорости нагрева металла и kи.н для двух указанных случаев. Статья в формате PDF 465 KB дуговая сталеплавильная печьагрегат «печь-ковш»скорость нагрева металлакоэффициент интенсивности нагреваэлектрическая схема замещениярафинировочный шлак 1. Никольский, Л.Е. Тепловая работа дуговых сталеплавильных печей / Л.Е. Никольский, В.Д. Смоляренко, Л.Н. Кузнецов. – М.: Металлургия, 1981. – 320 с. 2. Тулуевский, Ю.Н. Экономия электроэнергии в дуговых сталеплавильных печах / Ю.Н. Тулуевский, И.Ю. Зиннуров, А.Н. Попов, В.С. Галян. – М.: Энергоатомиздат,1987. – 104 с. 3. Смоляренко, В.Д. Энергетический баланс дуговых сталеплавильных печей / В.Д. Смоляренко, Л.Н. Кузнецов. – М.: Энергия, 1973. – 88 с.

Известно, что основным технологическим показателем работы электропечных агрегатов (дуговая сталеплавильная печь (ДСП), агрегат «печь-ковш» (АПК)) является скорость нагрева металла. На каждой ступени трaнcформации электрический режим работы агрегата должен быть организован таким образом, чтобы эта величина достигала максимального значения. Скорость нагрева металла зависит от ряда электрических и технологических показателей плавки: тока электрода IЭ, напряжения дуги UД, степени заглубления дуги в металл, наличия и толщины слоя шлака hШ в плавильном прострaнcтве.

Установлено, что имеется примерно пропорциональная зависимость между т.н. коэффициентом интенсивности нагрева kИ.Н, равным произведению тока дуги на ее мощность, и скоростью нагрева металла vН [1]. Хаpaктер зависимости kИ.Н от тока электрода носит экстремальный хаpaктер, поэтому легко определить такую величину IЭ, при которой kИ.Н примет максимальное значение. Для определения kИ.Н необходимо составить схему замещения электрической части электропечного агрегата. Поскольку применение kИ.Н оправдано только тогда, когда дуги, экранированные или неэкранированные шлаком, горят над жидким металлом (стадии окисления и рафинировки), схема замещения может быть принята линейной и однофазной, т.к. в этом случае несимметрия и несинусоидальность токов и напряжений в питающей сети выражены настолько, что возможно пренебречь данными явлениями. На рис. 1,б) представлена данная схема замещения, в ней сопротивление RШ.Y, моделирующее ответвление части тока электрода в шлак, учитывается при коэффициенте экранирования дуги kЭ.Д > 1, т.е. в случае, когда дуга экранирована шлаком по всей длине и имеется непосредственный контакт между шлаком и электродом. Для неэкранированных дуг обозначим коэффициент интенсивности нагрева металла как kИ.Н.Н и определим согласно (1):

(1)

Для дуг, экранированных шлаком, с учетом того, что при значительных величинах hШ часть тока электрода ответвляется в шлак, обозначим рассматриваемую величину как kИ.Н.Э и определим согласно (2):

(2)

где RШ.УД.Y – удельное сопротивление слоя шлака единичной толщины (например 1, см).

Если воспринимать зависимость vН = f(kИ.Н) так, как она описана в [1], то получится, что большему значению kИ.Н соответствует большая скорость нагрева металла. Однако более подробные исследования этой зависимости, результаты которых представлены в [2], и наблюдения за работой 330 т. агрегатов «печь-ковш», установленных в Конверторном цехе № 2 ОАО «НЛМК», показали, что при наличии шлака в ковше меньшим значениям kи.н могут соответствовать большие скорости нагрева. Для подтверждения правомерности рекомендаций о поддержании максимума kИ.Н для достижения максимальной скорости нагрева металла согласно (2) был произведен расчет KИ.Н.Э для различных значений тока электрода, а скорость нагрева металла – из решения системы дифференциальных уравнений, описывающих тепловой режим АПК, где первое уравнение будет описывать тепловое состояние металла, а второе – шлака:

(3)

где dQД.М – дифференциал количества теплоты, выделяемого дугой в пределах металла; dQМ.тепл – дифференциал количества теплоты, предаваемого металлу шлаком; k – коэффициент, определяющий долю теплоты, обусловленной электрическим нагревом, в общем количестве теплоты, получаемом металлом и шлаком (согласно [1] при рафинировке на электрический нагрев приходится около 50 % приходной части теплового баланса (остальное обусловлено химическими реакциями и теплотой, вносимой предварительно подогретыми шлакообразующими и присадками)); dQМ – дифференциал теплосодержания металла; dQД.Ш – дифференциал количества теплоты, выделяемого дугой в пределах шлака; dQШ.Рез – дифференциал количества теплоты, выделяемого в шлаке за счет резистивного нагрева; dQШ – дифференциал теплосодержания шлака; dQП.Дн, dQП.Ст, dQП.Кр – дифференциалы потерь тепла конвекцией и излучением через днище, стенки, крышку ковша соответствунно; dQП.Г, dQП.В – дифференциалы потерь тепла с отходящими газами и охлаждающей водой [1, 3].

б

Рис. 1. Схемы замещения электрической части электропечного агрегата: а – поясняющая схема электроснабжения; б – схема замещения для определения kИ.Н:, – линейный ток и фазное напряжение, потрeбляемые печным трaнcформатором из сети; , , , – сопротивления короткого замыкания и холостого хода печного трaнcформатора соответственно; RКС, XКС – сопротивления короткой сети; RШ.Y – сопротивление слоя шлака, приведенное к напряжению дуги; RД – сопротивление дуги. – ток холостого хода печного трaнcформатора; , – ток и напряжение дуги; – ток, протекающий через слой шлака. Все токи, напряжения и сопротивления приведены к вторичному напряжению печного трaнcформатора

Расчет осуществлялся для первых трех ступеней трaнcформации потому, что максимуму kИ.Н.Э на них соответствуют токи, не превышающие допустимых для печного трaнcформатора значений. Результаты этих расчетов представлены на рис. 2. Сопоставление kИ.Н.Э и скорости нагрева металла показало, что на одной ступени трaнcформации при постоянной толщине шлака большим значениям kИ.Н соответствуют большие значения vН.

а)б)в)

Рис. 2. Зависимости скорости нагрева vН металла от коэффициента интенсивности нагрева металла kИ.Н.Н для дуг, экранированных шлаком:а – для первой ступени трaнcформации; б – для второй ступени трaнcформации; в – для третьей ступени трaнcформации.

Необходимо также рассмотреть данную зависимость для случаев, когда дуга горит без экранирования. Исследуемые агрегаты из-за опасности повреждения крышки в таком режиме не работают, поэтому скорость нагрева металла была определена расчетным путем, исходя из того, что металл поглощает 100 % мощности, выделяемой участком дуги, погруженном в него, и 25 % мощности открытого участка дуги за счет отражения на него лучистых потоков от футеровки [1]. Остальные 75 % энергии открытого участка дуги теряются через крышку, с охлаждающей водой и отходящими газами. Исходя из этого, было составлено уравнение теплового баланса:

(4)

где UД.М – падение напряжения на участке дуги в пределах металла, определяемое с учетом того, что градиент напряжения столба неэкранированной дуги равен 1,0 [1]; QМ – теплосодержание металла; QП – тепловые потери конвекцией и излучением через стены и днище ковша; PД.Н – мощность неэкранированной дуги.

Рис. 3. Зависимость скорости нагрева vН.Н металла от коэффициента интенсивности нагрева металла kИ.Н.Н для неэкранированных дуг

Расчет скорости нагрева металла, не экранированного шлаком, осуществлялся для каждой ступени трaнcформации, ток электрода принимался равным соответствующим эксплуатационным значениям. Результаты расчетов скорости нагрева и kИ.Н.Н представлены на рис. 3. Из их анализа можно заключить, что при горении неэкранированных дуг на жидкий металл скорость его нагрева имеет один и тот же хаpaктер зависимости от kИ.Н.Н для всех ступеней трaнcформации.

Можно сделать вывод, что при определении параметров оптимального электрического режима достижением максимума kИ.Н для экранированных дуг следует анализировать работу агрегата на определенной ступени трaнcформации при определенной толщине шлака, а для неэкранированных дуг зависимость vН = f(kИ.Н) можно использовать для всех ступеней трaнcформации.



СОЦИАЛЬНЫЕ АСПЕКТЫ ЧЕРЕПНО-МОЗГОВОГО ТРАВМАТИЗМА

СОЦИАЛЬНЫЕ АСПЕКТЫ ЧЕРЕПНО-МОЗГОВОГО ТРАВМАТИЗМА Статья в формате PDF 112 KB...

28 04 2024 13:35:14

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I)

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I) С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные хаpaктеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции. ...

27 04 2024 14:26:37

БИОХИМИЧЕСКИЕ И ИММУНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ КРОВИ У БОЛЬНЫХ С ХЛАМИДИЙНОЙ И УРЕАПЛАЗМЕННОЙ ИНФЕКЦИЯМИ В УСЛОВИЯХ СРЕДНЕГО ПРИОБЬЯ (СУРГУТ)

БИОХИМИЧЕСКИЕ И ИММУНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ КРОВИ У БОЛЬНЫХ С ХЛАМИДИЙНОЙ И УРЕАПЛАЗМЕННОЙ ИНФЕКЦИЯМИ В УСЛОВИЯХ СРЕДНЕГО ПРИОБЬЯ (СУРГУТ) Проведены биохимические и иммунологические исследования крови у больных с урогeнитaльными инфекциями в условиях Среднего Приобья. Отмечены патологические изменения показателей белкового, липидного обменов и активация белков острой фазы. Наблюдалось резкое повышение активности креатинкиназы в крови всех групп больных. Результаты иммунологических исследований показали изменения В-клеточного звена в сторону увеличение уровня иммуноглобулинов IgG, IgA и снижение активности Т-клеточного звена иммунитета. ...

04 04 2024 3:33:15

ИММУНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ОЗДОРОВЛЕНИЯ НООСФЕРЫ

ИММУНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ОЗДОРОВЛЕНИЯ НООСФЕРЫ Статья в формате PDF 111 KB...

03 04 2024 18:36:32

МИТОХОНДРИАЛЬНЫЕ ФЕРМЕНТЫ РАЗНЫХ ОРГАНОВ У СВИНЕЙ

МИТОХОНДРИАЛЬНЫЕ ФЕРМЕНТЫ РАЗНЫХ ОРГАНОВ У СВИНЕЙ Исследована активность трaнcфераз в митохондриях различных органов трех линий свиней породы СМ-1 новосибирской селекции. Определена активность аспартат-аминотрaнcферазы, аланин-аминотрaнcферазы в митохондриях, супернатанте скелетных мышц, сердца и печени животных. В результате эксперимента установлено, что по активности трaнcфераз в митохондриях лучшими являются свиньи линий Светлого и Совета. ...

30 03 2024 8:39:51

ЕДИНЫЙ ЗАКОН ВАРИАЦИЙ ЛЮБЫХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ГОМОЛОГИЧЕСКИХ РЯДАХ

ЕДИНЫЙ ЗАКОН ВАРИАЦИЙ ЛЮБЫХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ГОМОЛОГИЧЕСКИХ РЯДАХ Закономерности изменения различных физико-химических констант органических соединений (А) в гомологических рядах идентичны и могут быть описаны простейшим линейным рекуррентным соотношением А(n+1) = aA(n) + b, связывающим их значения с величинами соответствующих констант для предыдущих гомологов. ...

29 03 2024 0:12:43

«ЦВЕТНЫЕ» СИМПТОМЫ В ПРАКТИЧЕСКОЙ МЕДИЦИНЕ

«ЦВЕТНЫЕ» СИМПТОМЫ В ПРАКТИЧЕСКОЙ МЕДИЦИНЕ Статья в формате PDF 173 KB...

27 03 2024 7:55:30

УНИВЕРСАЛЬНЫЙ ХАРАКТЕР РЕКУРРЕНТНЫХ ЗАВИСИМОСТЕЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УНИВЕРСАЛЬНЫЙ ХАРАКТЕР РЕКУРРЕНТНЫХ ЗАВИСИМОСТЕЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ Уникальные возможности линейных рекуррентных уравнений первого порядка А(n+1) = aA(n) + b позволяют хаpaктеризовать закономерности изменения различных свойств органических соединений (А) не только в пределах локальных групп гомологов, но и одновременно всех рядов с одинаковыми гомологическими разностями. Более того, рекуррентные соотношения применимы к функциям не только целочисленных (число атомов углерода в молекуле), но и равноотстоящих значений аргументов A(x+Δx) = aA(x) + b, (Δx = const). Этот способ аппроксимации проиллюстрирован на примерах температурных зависимостей растворимости различных веществ в воде и даже времен релаксации в высокочастотных полях. ...

24 03 2024 22:42:13

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::