МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОКСИГИДРАТНЫХ ГЕЛЕВЫХ СИСТЕМ ЦИРКОНИЯ И ИТТРИЯ > Полезные советы
Тысяча полезных мелочей    

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОКСИГИДРАТНЫХ ГЕЛЕВЫХ СИСТЕМ ЦИРКОНИЯ И ИТТРИЯ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОКСИГИДРАТНЫХ ГЕЛЕВЫХ СИСТЕМ ЦИРКОНИЯ И ИТТРИЯ

Сухарев Ю.И. Кострюкова А.М. Сухарева И.Ю. Статья в формате PDF 116 KB

Гели окcигидратов тяжелых металлов являются перспективными сорбционными материалами для очистки технологических растворов на соответствующих производствах. Они обладают высокими сорбционными хаpaктеристиками, сравнительно дешевы, термо- и радиационно устойчивы, особенно в сравнении со своими сорбционными аналогами - органическими ионообменными смолами. Исследование структуры оксигидратных гелей под воздействием различных внешних условий способно дать ценную информацию о возможном способе синтеза сорбентов.

Известно, что гели оксигидратов тяжелых металлов - это эволюционирующие системы, в которых постоянно происходит реструктуризация. Методами математического моделирования были проведены исследования изменения ряда хаpaктеристик гелей во времени. Особое место среди них занимают исследования гелевых систем в постоянном электрическом поле, так как при этом можно разграничить взаимодействие дисперсионной среды и непосредственно геля.

Для этого была создана специальная электронная аппаратура с частотой опроса 5 раз в секунду. Экспериментальная установка для измерения состояла из полой трубки, на концах которой закреплены круглые платиновые электроды и блока на основе модуля Е-270 [1].

Выходное сопротивление приближалось к нулю, то есть гелевая ячейка замыкалась накоротко (шунтировалась). Поэтому в этом случае замерялся электроток, возникающий в электролитической ячейке.

Подача напряжения отсутствовала, но при этом прибором регистрировалось появление и изменение электрического дискретного тока во времени. Предлагаемое нами объяснение опирается на представлениях о самоорганизации геля во времени.

Межмолекулярные силы Ван-дер-Ваальса, радиально сжимая спиральные удлиненные фрагменты геля, окруженные ДЭС, инициируют выброс (выжимание из структурированного геля) молекул воды и ионов диффузного слоя ДЭС во внешний мицеллярный раствор. Сами же гелевые фрагменты при этом, начинают перемещаться в противоположную часть ячейки (электрофорез). Выброшенные ионы, естественно, начнут перемещаться к платиновому электроду, а затем в обратном направлении, дабы скомпенсировать заряд и создать новый ДЭС и его поляризацию. Данное явление предполагает создание противотока ионов, например, в пристеночном слое (обратный электроосмос).

Это движение ионов и регистрируется как возникновение тока в системе.

Также были проанализированы изменения амплитуды и периода (частоты) выбросов тока в зависимости от времени для образца оксигидрата иттрия и циркония. Анализ экспериментальных данных проводили путем выбора на кривой изменения тока значений с постоянной токовой амплитудой, для которых определяли периоды появления дискретного тока.

Для определенных значений амплитуды были получены некоторые закономерности изменения периодов (установлены числовые ряды роста периодов), период фиксировали в секундах. Установлены два различающихся ряда варьирования значений периодов и внутри каждого ряда наблюдается удвоение периодов.

Полученные данные подтверждают универсальные законы перехода к хаотическому состоянию (открытые Фейгенбаумом) гелевых систем, при удвоении периода "выброса" ионов в гелевых системах, проявляющихся как периодический всплеск электротока.

СПИСОК ЛИТЕРАТУРЫ

  1. Сухарев Ю.И.,Сухарева И.Ю., Рябухин А.Г.,Кострюкова А.М., Зиганшина К.Р., Захаров В.А. Особенности электропроводности оксигидратных систем иттрия и цирконияи гелей кремневой кислоты // Известия Челябинского научного центра УрО РАН, 2004. - №2 - C130-135. -. (http://csc.ac.ru/news/)
  2. Сухарев Ю.И.,Сухарева И.Ю., Кострюкова А.М. Электропроводность самоорганизации оксигидратных гелей // Известия Челябинского научного центра УрО РАН, 2004. - №3 (принято к печати). (http://csc.ac.ru/news/).


ИНДИВИДУАЛЬНО-ТИПОЛОГИЧЕСКИЕ ОСОБЕННОСТИ КОМПОНЕНТНОГО СОСТАВА ТЕЛА ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА

ИНДИВИДУАЛЬНО-ТИПОЛОГИЧЕСКИЕ ОСОБЕННОСТИ КОМПОНЕНТНОГО СОСТАВА ТЕЛА ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА Представлены результаты обследования 1547 детей (817 мальчиков и 730 девочек) в возрасте от 3 до 7 лет. Проведен сравнительный анализ компонентного состава тела у детей с различными типами телосложения. ...

17 04 2024 1:25:53

К ВОПРОСУ О ПОВТОРЕ КАК ЯЗЫКОВОМ ЯВЛЕНИИ

Статья в формате PDF 247 KB...

16 04 2024 14:15:54

СПОСОБ ПЛАЗМЕННОЙ СВАРКИ НА ПЕРЕМЕННОМ ТОКЕ

СПОСОБ ПЛАЗМЕННОЙ СВАРКИ НА ПЕРЕМЕННОМ ТОКЕ Статья посвящена решению проблемы сварки металлов, имеющих на поверхности тугоплавкие окисные пленки. Были проведены исследования дугового разряда обратной полярности, горящий между соплом плазменной горелки и изделием, возбуждаемый и стабилизируемый с помощью факела плазмы, в ходе экспериментов были получены сваренные образцы из цветных металлов и алюминия. ...

13 04 2024 17:35:14

ГОЛОД НА КУБАНИ 1932-1933 ГГ.

ГОЛОД НА КУБАНИ 1932-1933 ГГ. Статья в формате PDF 320 KB...

12 04 2024 3:19:12

ПОНКРАТОВ ПЕТР АНДРЕЕВИЧ

ПОНКРАТОВ ПЕТР АНДРЕЕВИЧ Статья в формате PDF 89 KB...

03 04 2024 0:33:29

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::