НАХОЖДЕНИЕ И КОРРЕКТИРОВКА СЛУЧАЙНЫХ ВОЗМУЩЕНИЙ В ЧИСЛОВОМ N-МЕРНОМ ПРОСТРАНСТВЕ > Полезные советы
Тысяча полезных мелочей    

НАХОЖДЕНИЕ И КОРРЕКТИРОВКА СЛУЧАЙНЫХ ВОЗМУЩЕНИЙ В ЧИСЛОВОМ N-МЕРНОМ ПРОСТРАНСТВЕ

НАХОЖДЕНИЕ И КОРРЕКТИРОВКА СЛУЧАЙНЫХ ВОЗМУЩЕНИЙ В ЧИСЛОВОМ N-МЕРНОМ ПРОСТРАНСТВЕ

Вериго С.А. Статья в формате PDF 268 KB В настоящее время для решения многих актуальных задач требуется использование методы поиска случайных возмущений на неком числовом поле. Если законы числового поля заданы, то задача имеет простое решение, и решается за линейное время. Для большинства таких задач быстродействия известных методов вполне достаточно. Если же законы поля неизвестны, или известны лишь частично, то задача многократно усложняется. Для некоторых случаев, ограниченных жёсткими условиями могут быть использованы модификации известных методов.

В качестве решения, например, может быть применён, например, метод нейросетевого анализа. При этом, важно правильно выбрать архитектуру и построить "обучение" сети. Данный метод является одним из приоритетных при условии, что n - достаточно велико. Тогда обучение сети можно осуществить автоматизированным методом и точность определения будет достаточно высока. Однако, при небольшом количестве рядов точность определения будет недостаточной, количество ложных сpaбатываний будет в разы больше чем верных.

Другим подходом к решению поставленной задачи может быть метод варьирования (полного перебора) и выявления влияния друг на друга при помощи методов приближённых вычислений. Однако все эти методы требуют достаточного большого количества операций, и при большом количестве вариантов время поиска будет велико. Причём будет расти не линейно, и не даже квадратично. Например, при количестве параметров m, количество проверяемых вариантов при глубине поиска в две переменных - m2+2*m4. При этом если параметр является переменной от 3 других параметров, то зависимость не будет найдена. Следовательно, метод варьирования будет эффективен только для рядов с небольшим количеством параметров.

Становится ясно, что способ нейросетевого анализа имеет жёсткие ограничения на количество рядов, а метод варьирования имеет жесткие ограничения на длину ряда. Необходим метод, который допустимо хорошо работал бы с любыми входными данными в рамках заданных ограничений. При этом время работы алгоритма должно быть линейным или сравнимо с линейным.

Рассмотрим задачу поиска искажений входные данные на примере матрицы чисел m*n, где m - количество параметров, а n - количество однородных (однотипных) рядов. К данным таблицы предъявляется два условия - первое состоит в том, что некоторые величины построчно коррелируют друг с другом или являются функцией других параметров, второе - что большинство чисел (более 95 % например) - корректные. Требуется отыскать точки (элементы) матрицы, в которых имеют место нелогичные возмущения. При этом правила зависимости (функции) одних параметров от других существуют, но неизвестны. Возможно решение одной из двух задач.

Первая задача, более простая, - отыскание точек случайных возмущений в матрице без выявления зависимостей параметров друг от друга. Вторая задача, комплексная, - нахождение зависимостей параметров друг от друга и отыскание точек случайных возмущений в матрице.

Предлагается использовать модифицированный метод варьирования. Его суть состоит в следующем - рассматриваем каждый столбец как параметр некой функции. Рекурсивно разбиваем все параметры по интервалам, и для каждого интервала формируем результирующий параметр. Причём результирующий параметр не может быть аргументом функции. Идём при помощи объединений от простейшей функции - функции одного аргумента. Если выявлено влияние одного параметра на другой, то исключаем один из них из дальнейшего просмотра, уменьшая количество параметров для дальнейшего просмотра. Найденные зависимости помещаем в стек, чтобы впоследствии начать рассмотрение с зависимостей с максимальным числом параметров.

Для определения зависимости параметров от результата используется следующий метод - представим данные каждого ряда как точку функции. Для матрицы рассматривается двухмерный вид - точка на плоскости. Тогда точки, которые выбиваются из графика функции и являются точками возмущения. Рассмотрим простейший пример:

Входные данные:

 

a

b

c

1

1

5

5

2

2

10

8

3

7

35

5

4

3

15

8

5

6

30

5

6

9

45

11

7

5

25

8

8

4

15

9

9

11

55

3


График 1. Линейная зависимость a от b

Необходимо выявить и исправить ошибку в переменной b в восьмом ряду. Построим линейную зависимость a от b.

Из графика 1 чётко видно возмущение в точке №8.

Для линейной зависимости поиск зависимостей не составляет сложности. Для нелинейных случаев необходимо уже применение методов отыскания новой точки функции по уже известным. Для этого добавляем информацию обо всех точках в информационную таблицу приближённой функции b= (a). Информация об ошибочных точках также попадает, но она не вносит сильного искажения, так как количество таких точек невелико, и вес каждой из них будет невелик. Далее производим поиск для каждой точки, при помощи, например, сплайн функций, далее вычисляем:

, и получаем приближённое значение для каждой точки b. Далее вычисляем коэффициент расхождения k:

Далее, для каждой точки рассчитываем

Если , то с достоверностью  можно утверждать, что точка ошибочная.

Проведя анализ для всех точек всех рядов, получаем искомые точки за линейное время.

Работа представлена на научную конференцию с международным участием «Секция молодых ученых, студентов и специалистов», Тунис, 12-19 июня 2005 г. Поступила в редакцию 28.04.2005 г.



ПСИХОЛОГИЯ И ПЕДАГОГИКА (учебное пособие)

ПСИХОЛОГИЯ И ПЕДАГОГИКА (учебное пособие) Статья в формате PDF 107 KB...

28 04 2024 13:41:51

ЖИЖИН КОНСТАНТИН СЕРГЕЕВИЧ

ЖИЖИН КОНСТАНТИН СЕРГЕЕВИЧ Статья в формате PDF 114 KB...

25 04 2024 13:17:31

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ФАКТОРОВ НА ЖИЗНЕСПОСОБНОСТЬ ПОСЕВНОГО МАТЕРИАЛА

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ФАКТОРОВ НА ЖИЗНЕСПОСОБНОСТЬ ПОСЕВНОГО МАТЕРИАЛА В работе представлены результаты исследования влияния высокоинтенсивных физических факторов электрического поля коронного разряда с напряженностью 1-6 кВ/см, создаваемого установкой «Экран», на жизнеспособность семян ячменя сорта «Абава», с целью повышения качества семенного материала. Определено, что наиболее эффективными воздействиями ЭПКР для повышения качества семенного материала без отлежки зерна перед посевом являются режимы с напряженностью 1 кВ/см и 2 кВ/см. Показано, что наиболее ярко выраженный бактерицидный эффект получен при воздействии на семена электрическим полем коронного разряда с напряженностью 6 кВ/см и 4 кВ/см. Эти режимы наряду с угнетением очаговой плесени тормозят всхожесть, прорастание и снижают жизнеспособность семян. Однако, данные режимы могут оказаться перспективными для обеззараживающей обработки фуражного зерна. Выявлено, что наиболее эффективным режимом электрического поля коронного разряда для повышения качества семенного материала с отлежкой зерна перед посевом является режим с напряженностью 2 кВ/см, поскольку данное воздействие оказывает наиболее ярко выраженный бактерицидный эффект наряду со стимуляцией всхожести, прорастания и повышением жизнеспособности семян. ...

24 04 2024 18:25:59

МОТОВИЛОВ КОНСТАНТИН ЯКОВЛЕВИЧ

МОТОВИЛОВ КОНСТАНТИН ЯКОВЛЕВИЧ Статья в формате PDF 215 KB...

20 04 2024 8:41:53

термодинамика и люминесцентный газовый анализ

термодинамика и люминесцентный газовый анализ В работе рассмотрены термодинамические аспекты люминесцентного газового анализа. Молекулы красителя, адсорбированные на поверхности пористого вещества или внедренные в полимерную пленку, рассматриваются как система невзаимодействующих частиц, погруженная в термостат. Для относительной интенсивности флюоресценции молекул красителя получена связь с основной термодинамической хаpaктеристикой термостата – энергией Гиббса. Определены термодинамические ограничения точности газового анализа. Показано, что оптимальной основой для люминесцентного анализатора является полимерная пленка с наименьшим значением поверхностного натяжения. ...

14 04 2024 12:25:26

МЕЖДИСЦИПЛИНАРНЫЕ СВЯЗИ НАУК О ЧЕЛОВЕКЕ И ОБЩЕСТВЕ

МЕЖДИСЦИПЛИНАРНЫЕ СВЯЗИ НАУК О ЧЕЛОВЕКЕ И ОБЩЕСТВЕ Статья в формате PDF 119 KB...

13 04 2024 19:10:42

О ДЕХЛОРИРОВАНИИ ВОДОПРОВОДНОЙ ВОДЫ

О ДЕХЛОРИРОВАНИИ ВОДОПРОВОДНОЙ ВОДЫ Статья в формате PDF 291 KB...

11 04 2024 5:11:33

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ ПРИ ОСЛОЖНЁННЫХ ФОРМАХ РОЖИ

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ ПРИ ОСЛОЖНЁННЫХ ФОРМАХ РОЖИ Статья в формате PDF 123 KB...

10 04 2024 14:48:58

ТЕОРИЯ УСТРОЙСТВА СОЛНЕЧНОЙ СИСТЕМЫ

ТЕОРИЯ УСТРОЙСТВА СОЛНЕЧНОЙ СИСТЕМЫ Экспериментальная работа представлена с целью описания хаpaктеристик Солнечной системы с помощью существующих теорий. Числовые данные взяты из Интернета, теория – из электронных энциклопедий. Результаты исследований показали, что современная форма уравнений Дж. Максвелла позволяет вычислить отсутствующие фундаментальные константы и описывать гравитон подобно фотону. Закон всемирного тяготения И. Ньютона часть современной формы уравнений Дж. Максвелла – теперь гравитационной теории поля. «Квантово-волновые» свойства гравитона позволяют строить теорию Солнечной системы подобно стационарному уравнению Э. Шрёдингера. В статье формулы используются в чрезвычайных случаях, но графики и математическая статистика к ним широко используется. Рисунки и статистика наглядно демонстрируют силу теоретических законов. Предложенная теория показывает случайное совпадение, и ограниченность эмпирического правила Тициуса-Боде. ...

03 04 2024 12:16:44

МОДЕРНИЗАЦИЯ ГРОХОТА С ЭЛЕМЕНТАМИ ДИНАМИЧЕСКОГО СИНТЕЗА

МОДЕРНИЗАЦИЯ ГРОХОТА С ЭЛЕМЕНТАМИ ДИНАМИЧЕСКОГО СИНТЕЗА В статье даны пpaктические рекомендации для проектирования вибратора грохота, который по технологическим соображениям был переведён в режим работы с повышенной частотой вращения и уменьшенной амплитудой. Разработана динамическая схема грохота и предложен алгоритм решения дифференциального уравнения. Короб грохота рассматривался как одномассная система с элементами переменной жесткости опор короба, что позволило определить требуемую возмущающую силу вибратора и величину статического момента массы дeбaлансов при заданных кинематических параметрах. На основе полученных результатов разработана рациональная конструкция дeбaлансов. ...

30 03 2024 16:55:29

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::