КОЛЕБАНИЯ УПРУГО-ПЛАСТИЧЕСКОЙ СРЕДЫ > Полезные советы
Тысяча полезных мелочей    

КОЛЕБАНИЯ УПРУГО-ПЛАСТИЧЕСКОЙ СРЕДЫ

КОЛЕБАНИЯ УПРУГО-ПЛАСТИЧЕСКОЙ СРЕДЫ

Богатов Н.М. Савченко А.П. Статья в формате PDF 147 KB

Колебания среды, возникающие в твердом теле при высоких температурах, оказывают значительное влияние на образование в нем структурных дефектов. Изучение хаpaктера распространения колебаний в упруго-пластической среде является актуальной задачей физики конденсированного состояния. Взаимосвязь колебаний плотности структурных дефектов и смещений среды можно описать с помощью калибровочной теории дефектов [1].

Целью работы является определение частот колебаний упруго-пластической среды с дефектами структуры.

Из полевых уравнений теории [1] следуют уравнения непрерывности и равновесия в обобщенной форме:

,                                 (1)

где , , ; греческие индексы принимают значения 0, 1, 2, 3, а латинские - 1, 2, 3; - коэффициенты упругой жесткости кристалла; ρ = const - плотность материала; c - скорость света;  - тензор деформаций кристалла; αij - тензор теплового расширения кристалла, α0a=0; T - температура.

uαβ = (∂βuα + ∂αuβ + θαβ + θβα)/2,                                (2)

где  - вектор смещений; θαβ - компоненты объектов аффинной связности, обусловленные трaнcляционными дефектам, например, краевыми дислокациями.

Основные уравнения имеют более простой вид в случае изотропной среды. Коэффициенты упругой жесткости вычисляются по формуле:

cijkl = λ∙δijδkl+μ∙δilδjk+ν∙δikδlj.                                       (3)

Подставив (2) и (3) в (1), получим уравнение динамики среды с дефектами:

,       (4)

где , , , по повторяющимся индексам подразумевается суммирование. Правая часть уравнения (4) содержит вынуждающие силы.

Направим ось Ox по направлению распространения волны, тогда вектор смещений ui(x,t) можно разложить на продольную и поперечные составляющие вида A0exp{i(ω∙t+k∙x)}.

Величины p, si, fi зададим в виде гармонических колебаний с амплитудами A1, A2, A3 соответственно, сдвинутых по фазе на величину φ относительно смещений. Подставим ui(x,t), p(x,t), si(x,t) и fi(x,t) в (4). Для продольных колебаний получим уравнение:

-(λ+2μ)k2+ρω2 = (- i∙λkτ1 - μτ2 + iρcωτ3)e,         (5)

для поперечных колебаний:

- μk2+ρω2 = (- i∙λkτ1 - μτ2 + iρcωτ3)e,  (6)

где , m = 1, 2, 3.

Решив уравнения (5), (6) относительно ω, получим два корня:

, n = 0,1,   (7)

где для продольных колебаний:

,

для поперечных колебаний:

,

.

Мнимая часть выражения (7) определяет коэффициент нарастания (затухания) колебаний. Волновые решения с Imwn ≠ 0 физически не реализуются в твердом теле.

Найдем частоты волн колебаний, распространяющихся в среде с дефектами. Положим мнимую часть ωn равной нулю и определим значение разности фаз φ. Для упрощения расчетов выберем τ2 = τ3 = 0, тогда получим два значения φ0 = π/2, φ1 = - π/2, при которых

для поперечных колебаний

ωn = ( |(-1)n k∙μ + τ1∙λ|∙k / ρ )1/2, n = 0,1;                (8)

для продольных колебаний

ωn = ( |(-1)n k∙(λ+2μ) + τ1∙λ|∙k / ρ )1/2, n = 0,1        (9)

Частоты (8) и (9) соответствуют физически возможным решениям уравнения (4) для незатухающих волн деформации. При τ1 = 0 выражения (8), (9) переходят в известные выражения для волн в упругой среде без дефектов. Структурные дефекты влияют на частоту распространяющихся волн. Зависимость ωn от отношения амплитуд τ для продольных колебаний показана на рис. 1. Для частоты поперечных колебаний график имеет аналогичный вид. В расчетах использованы значения λ = -5,09∙1011 Н/м2 и μ= 5,31∙1011 Н/м2, ρ = 2,3 ∙ 103 кг/м3, k = 1 м-1.

Рисунок 1. Зависимость частоты продольных волн в упруго-пластической среде от отношения амплитуд τ: 1 - ω0(τ); 2 - ω1(τ)

Функция ω0(τ) монотонно возрастает при τ>0. Функция ω1(τ) имеет минимум, в котором частота достигает значения ωmin = 0, что соответствует стоячим волнам. Длина стоячих волн зависит от значения τ.

Таким образом, получены следующие типы решений: 1 - непрерывно возрастающие (убывающие) по амплитуде волны, реально не наблюдаемые; 2 - незатухающие волны деформации, в дисперсионные соотношения которых входят упругие постоянные среды, плотность среды, отношение амплитуд колебаний вынуждающей силы и смещений.

СПИСОК ЛИТЕРАТУРЫ

[1] Bogatov N.M. Gauge field theory of dislocations formation by thermal stresses // Phys. Stat. Sol. (b). 2001. V. 228. №3 P.651- 661.



Коммуникация молодежи в повседневной жизни

Коммуникация молодежи в повседневной жизни Статья в формате PDF 250 KB...

26 04 2024 19:29:17

КОСТОМАХИН НИКОЛАЙ МИХАЙЛОВИЧ

КОСТОМАХИН НИКОЛАЙ МИХАЙЛОВИЧ Статья в формате PDF 87 KB...

24 04 2024 10:31:31

БИОВОЛНОГЕНЕЗ: Ч.2. КАТАСТРОФИЗМ В ТЕХНО- И БИОСФЕРЕ

БИОВОЛНОГЕНЕЗ: Ч.2. КАТАСТРОФИЗМ В ТЕХНО- И БИОСФЕРЕ Статья в формате PDF 147 KB...

23 04 2024 15:20:23

ИНФОРМАЦИОННЫЙ АНАЛИЗ МОЧИ

ИНФОРМАЦИОННЫЙ АНАЛИЗ МОЧИ Статья в формате PDF 112 KB...

15 04 2024 22:48:24

ПЕРЕРАБОТКА ПЛАСТИКОВЫХ ОТХОДОВ

ПЕРЕРАБОТКА ПЛАСТИКОВЫХ ОТХОДОВ Статья в формате PDF 267 KB...

11 04 2024 13:29:34

ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЙ ГОРМОНАЛЬНОГО БАЛАНСА В ДИНАМИКЕ ОПУХОЛЕВОЙ ПРОГРЕССИИ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ

ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЙ ГОРМОНАЛЬНОГО БАЛАНСА В ДИНАМИКЕ ОПУХОЛЕВОЙ ПРОГРЕССИИ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ Исследование гормонального баланса в группах пациенток с I-IIA и IIB-IIIA стадиями распространения paка молочной железы позволило обнаружить прогрессирующее снижение содержания в крови прогестерона, коррелирующее со стадией распространения опухолевого процесса. Уровень эстриола снижался в равной мере в обеих группах наблюдения пациентов (I-IIA и IIB-IIIA стадиями распространения неоплазии) по сравнению с показателями контроля. Указанные сдвиги гормонального баланса наблюдались в разных возрастных группах от 29 до 49 лет, достигая максимальных сдвигов в пре- и менопаузальный периоды. Содержание эстрадиола в крови оставалось в пределах нормы при I-IIA стадиях развития заболевания, резко возрастая при метастатической форме paка молочной железы. Мониторинг показателей содержания в крови прогестерона и эстрадиола может быть использован как один из способов оценки эффективности комплексной терапии заболевания и степени распространения неоплазии при paке молочной железы. ...

06 04 2024 14:28:12

ТЕХНОГЕННОЕ ПРЕОБРАЗОВАНИЕ ПОЧВ ЮЖНОЙ ЯКУТИИ (НА ПРИМЕРЕ ЯКОКИТ – СЕЛИГДАРСКОГО МЕЖДУРЕЧЬЯ)

ТЕХНОГЕННОЕ ПРЕОБРАЗОВАНИЕ ПОЧВ ЮЖНОЙ ЯКУТИИ (НА ПРИМЕРЕ ЯКОКИТ – СЕЛИГДАРСКОГО МЕЖДУРЕЧЬЯ) Представлены результаты исследований влияния открытых разработок месторождений золота на почвенный покров Якокит – Селигдарского междуречья Южной Якутии. Изучены разновозрастные дражные отвалы и почвы естественных лесных биогеоценозов. Главная особенность дражных полигонов – отсутствие или незначительное количество мелкоземного субстрата на отвалах. Мелкоземный субстрат отвалов беден элементами питания. Регенерация почвенного покрова на техногенных ландшафтах затруднена и часто не происходит. ...

04 04 2024 5:40:40

СИНТЕЗ САМАРИЙ-ХРОМАЛЮМИНИЕВОГО ГРАНАТА

СИНТЕЗ САМАРИЙ-ХРОМАЛЮМИНИЕВОГО ГРАНАТА Статья в формате PDF 273 KB...

02 04 2024 19:26:52

ПРИОРИТЕТНЫЕ ОТРАСЛИ РАЗВИТИЯ ВОРОНЕЖСКОЙ ОБЛАСТИ

ПРИОРИТЕТНЫЕ ОТРАСЛИ РАЗВИТИЯ ВОРОНЕЖСКОЙ ОБЛАСТИ Статья в формате PDF 268 KB...

20 03 2024 10:30:13

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::