ОЧИСТКА ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ ЦВЕТНЫХ МЕТАЛЛОВ > Полезные советы
Тысяча полезных мелочей    

ОЧИСТКА ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ ЦВЕТНЫХ МЕТАЛЛОВ

ОЧИСТКА ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ ЦВЕТНЫХ МЕТАЛЛОВ

Пимнева Л.А. Статья в формате PDF 342 KB

Промышленные сточные воды многих химических, текстильных, машиностроительных, электротехнических заводов, предприятий цветной металлургии и других отраслей промышленности в большей или меньшей степени загрязнены солями цветных и тяжелых металлов. Наиболее часто они загрязнены солями цинка, кадмия, меди, хрома, никеля, ртути, железа реже содержат кобальт, марганец. В сточных водах пpaктически никогда не содержится только один вид катионов, а содержится смесь нескольких солей минеральных кислот.

С каждым годом расширяется сфера использования редких металлов - это радиоэлектроника, металлургия, авиация, химическая промышленность. Высокая стоимость, сложность переработки редких металлов привели к необходимости получения тонких металлических пленок на поверхности деталей. Для этой цели в настоящее время в гальванической технике используются такие редкие металлы как индий, молибден, германий, галлий и таллий. Промывные воды, как правило, содержат достаточное количество этих элементов.

Истощение природных ресурсов и загрязнение окружающей природной среды заставляют искать способы получения сырья из производственных отходов. Одним из таких направлений является разработка новых эффективных методов переработки сточных вод гальванотехники. Сточные воды и природные воды с повышенным содержанием токсичных тяжелых металлов особо опасны. Существует необходимость решения ряда технических, экономических и экологических проблем.

Загрязнение водной среды ионами тяжелых металлов опасно для всей биосферы, а также свидетельствует о расточительном отношении к ресурсам. Со сточными водами гальванотехники теряется более 50 % металлов, предназначенных для декоративных, защитных и других покрытий. Кроме того, тяжелые металлы оказывают токсичное воздействие на живые и растительные организмы, имеют тенденцию к накапливанию в пищевых цепочках, что усиливает их опасность для человека. Наиболее опасны ионные комплексные формы тяжелых металлов. Медь, марганец, кобальт, никель, цинк, кадмий, железо, хром относятся к группе токсичных тяжелых металлов. Это вызывает необходимость строгого контроля за их поступлением в окружающую среду, что требует на пpaктике использование сравнительно недорогих, доступных методов их улавливания.

Одним из таких методов является ионный обмен с применением комплексообразующих ионитов [1, 2]. Эффективность и экономичность извлечения ионов цветных, тяжелых и редких металлов из сточных вод методом ионного обмена зависит от их концентрации в воде, рН, общей минерализации воды.

Гальваническое производство относится к разряду весьма опасных источников загрязнения окружающей среды. Существует необходимость, рассматривать варианты бессточных систем водоиспользования с максимально возможным сокращением расхода свежей воды на промывку деталей.

Ионообменная очистка сточных вод от ионов металлов получает все большее распространение. С экономической точки зрения наиболее целесообразна ионообменная очистка не общего стока гальванического производства, а сточных вод, образующихся в отдельных технологических процессах и операциях и содержащих как можно меньше количества металлов и кислот.
В этом случае переработка и возврат в производство концентрированных растворов, образующихся при регенерации ионитов и содержащих различные химические продукты, вызывает наименьшие трудности.

Ионообменные методы регенерации позволяют не только полностью извлекать цветные, тяжелые и редкие металлы из отработанных растворов, но также получать продукты регенерации в виде чистых солей металлов, пригодных для повторного использования в производстве с целью приготовления заново и корректировки работающих электролитов. Кроме того, получаемая после ионообменной обработки очищенная вода в большинстве случаев без дополнительной обработки может быть использована в качестве оборотной.

Таким образом, использование ионообменных методов с целью регенерации металлов позволяет достичь пpaктически безотходной технологии в гальванических производствах.

Сточные воды при нанесении медно-цинкового покрытия содержат 20-25 мг/дм3 ионов меди и 40-45 мг/дм3 ионов цинка. Обменная емкость фосфорнокислого катионита КФП-12 по меди и цинку составляют 9,2 и 13,4 мг/г соответственно. Таким образом, происходит концентрирование ионов меди и цинка из раствора. Разделить данные ионы возможно на стадии десорбции.

Вымывание ионов будет определяться рН среды и образованием более устойчивого комплексного соединения при взаимодействии катиона металла с реагентом десорбирующего раствора, чем полимерный комплекс. Медь и цинк по разному ведут себя в растворах по отношению к серной кислоте. Медь образует более устойчивые сульфатные комплексы, по сравнению с цинком, поэтому серная кислота является более эффективным десорбентом для ионов меди. На основании этого было проведено разделение ионов меди и цинка на стадии десорбции 0,2 моль/дм3 раствором серной кислоты. При пропускании 0,2 моль/дм3 серной кислоты через колонку с ионитом сначала десорбируются ионы меди, а затем ионы цинка.

Количественное разделение осуществляется при промывании насыщенного катионита ионами металлов растворами, компоненты которых образуют с ионами металлов малодиссоциирующие растворимые комплексные ионы или соединения. Процесс десорбции ионов переходных металлов на фосфорнокислом катионите можно выразить реакцией:

константа равновесия, которой будет

Перестройка комплексов будет проходить при , то есть если константы устойчивости растворимых комплексов будут больше соответствующих констант полимерного комплекса.

Таким образом, установлены условия разделения и концентрирования ионов цинка и меди из отходов процесса рафинирования цинка.

Список литературы

  1. Копылова В.Д. Комплексообразование в фазе ионитов. Свойства и применение ионитных комплексов // Теория и пpaктика сорбционных процессов. - Воронеж, 1999. - Вып. 25. - С. 146-158.
  2. Копылова В.Д., Меквабишвили Т.В., Гефтер Е.Л. Фосфорсодержащие иониты. - Воронеж, 1992. - 192 с.


ТАНЦЕВАЛЬНОДВИГАТЕЛЬНАЯ ТЕРАПИЯ

ТАНЦЕВАЛЬНОДВИГАТЕЛЬНАЯ ТЕРАПИЯ В статье Жаворонковой И.А. и Некрасова А.С. «Танцевально-двигательная терапия» танец рассматривается не только как социокультурное, но и как социально-психологическое и психофизиологическое явление, как форма невер¬бальной коммуникации и самовыражения. Это приводит к возникновению нового психиатрического направления - танцевальной психотерапии, где танец используется как способ лечения. В статье анализируются основные этапы этого направления. ...

19 04 2024 13:26:39

НЕОБХОДИМОСТЬ АНАЛИЗА НАГРУЗКИ В СОТОВЫХ СЕТЯХ

НЕОБХОДИМОСТЬ АНАЛИЗА НАГРУЗКИ В СОТОВЫХ СЕТЯХ Статья в формате PDF 104 KB...

15 04 2024 22:11:11

ПРАВОСЛАВИЕ В ОБРАЗОВАТЕЛЬНОМ ПРОСТРАНСТВЕ

ПРАВОСЛАВИЕ В ОБРАЗОВАТЕЛЬНОМ ПРОСТРАНСТВЕ Статья в формате PDF 124 KB...

12 04 2024 17:13:52

ЗАЩИТА ПОВЕРХНОСТИ МЕТАЛЛОВ И СПЛАВОВ ОТ КОРРОЗИИ

ЗАЩИТА ПОВЕРХНОСТИ МЕТАЛЛОВ И СПЛАВОВ ОТ КОРРОЗИИ Статья в формате PDF 118 KB...

04 04 2024 3:40:56

ФОРМА И ТОПОГРАФИЯ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У КРЫСЫ

ФОРМА И ТОПОГРАФИЯ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У КРЫСЫ Поджелудочная железа белой крысы имеет три основные части – головка (дуоденальная часть), тело (пилорическая часть) и хвост (желудочно-селезеночная часть). По сравнению с человеком, она отличается большей рыхлостью, изогнутостью, разветвленностью. Встречаются два крайних варианта формы (в виде молотка или трилистника) и топографии поджелудочной железы у белой крысы. ...

28 03 2024 21:51:12

НОВЫЕ ПОДХОДЫ МОНИТОРИНГА ЗАГРЯЗНЕНИЯ ГЕОСИСТЕМ

НОВЫЕ ПОДХОДЫ МОНИТОРИНГА ЗАГРЯЗНЕНИЯ ГЕОСИСТЕМ Статья в формате PDF 224 KB...

27 03 2024 13:40:52

АБСОЛЮТНЫЙ ПРОГНОЗ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

АБСОЛЮТНЫЙ ПРОГНОЗ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Статья в формате PDF 378 KB...

23 03 2024 9:27:17

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::