РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ В ГРУНТОВЫХ И ВОДНЫХ СРЕДАХ > Полезные советы
Тысяча полезных мелочей    

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ В ГРУНТОВЫХ И ВОДНЫХ СРЕДАХ

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ В ГРУНТОВЫХ И ВОДНЫХ СРЕДАХ

Кочешкова Л.Г. Кочева Е.А. Палашов В.В. Статья в формате PDF 802 KB

Сила, действующая в электромагнитном поле на элемент объема материи, является результирующей пондероматорных сил, которые действуют в этом поле на все находящиеся в данном элементе объема электрические и магнитные элементарные частицы [1]. В потенциальном электрическом поле проявляются только силы, испытываемые электрическим зарядом, а также силы, испытываемые диполями поляризованного вещества. Произведение этой силы, действующей на элементарный заряд, на расстояние между электродами получается всегда одинаковым и дает энергию, передаваемую заряду, которая остается всегда постоянной и не зависит от расстояния между электродами. Энергия, сообщаемая элементарному заряду, не зависит и от величины силы тока. Сила, действующая на элементарный заряд может быть названа кулоновой (cf) и в случае объемно-распределенного заряда она представляется равенством, содержащим только векторы поля:

 (1)

где в общем случае вектор электрической индукции или смещения D = ε0E + P, а в случае линейного диэлектрика D = ε0εrE и P = ε0r - 1)E = ε0KE.

С другой стороны, Кельвин впервые обратил внимание еще на существование другой силы, действующей на поляризованные незаряженные тела в потенциальном поле. Эта сила названа кельвиновой (Kf). Ее отношение к единице объема выражается формулой:

 (2)

РV в декартовой системе координат

Используя идеи Фарадея, Максвелл нашел выражение тензора потенциального поля, дивергенция которого равна общим пондероматорным силам:

 (3)

Раскрывая левую и правую части выражения (3) и применяя операции векторного анализа к векторам электромагнитного поля, Максвелл представил компоненты тензора (потенциального, электрического, безвихревого rotE = 0) следующим образом:

 

или более общее выражение Рmn = EmDn - (ε0/2)E²δmn.

Легко усмотреть при rotE = 0 существование в вихревом поле еще одной силы, определяемой равенством:

 

Эта сила названа вихревой (Вf):

 (4)

В самом общем случае тензор натяжений электромагнитного поля можно представить следующей формулой:

 (5)

Эта формула верна как для линейных сред, когда D = ε0εrE и В = μ0μН, так и для общего случая, когда D = ε0E + Р и В = μ0Н + μ0М.

Дивергенция тензора натяжений электромагнитного поля дает соответствующее выражение силы, обусловленной этим полем:

 (6)

Представляя вихревые составляющие по уравнению Максвелла, К.М. Поливанов показал:

 (7)

Произведя простые преобразования, он представил два последних слагаемых в формуле (7), как производную по времени от вектора Пойнтинга

 (8)

Вектор Пойнтинга, деленный на с², представляет собой прострaнcтвенную плотность импульса П/с² = mu, как объемную плотность силы

 (9)

Представляя плотность переноса потока электромагнитных частиц в системе электрод - грунтовый электролит в виде вектора Пойнтинга, нами, впервые в России и за рубежом, выявлена закономерность превращения параметров электрического сопротивления под воздействием изменения уровня постоянной или выпрямленной ЭДС [2]:

 

  

где z - кажущееся сопротивление; R - омическое сопротивление; g - общая проводимость; εμ - показатель среды; α - угол распространения энергии; φ - угол преломления энергии; g+ - проводимость анионов (1/r+); g- - проводимость катионов (1/r-).

На рис. 1 представлена схема распространения потока энергии с определенным импульсом, направленной от анода к катоду.

Заметим, что помимо положительно и отрицательно заряженных частиц, никакого другого тока в грунтовых электролитах не образуется. Таким образом, молекулярно-кинетическую схему движения заряженных частиц (ионов) можно представить в виде схемы рис. 2.

 

Рис. 1. Схема распространения энергии потока частиц, локализованных вектором Пойнтинга

Как видим, электрический ток, движение ионов от анода к катоду, является мерой переноса только электронного заряда, поэтому U/I+ = r+; g+ = 1/r+. Электрический ток, движение от катода к аноду, является мерой переноса ионного тока. Приняв электронный ток равным ионному, направленному от анода к катоду, легко рассчитать полный ток, который является мерой переноса общего заряда, представляющего собой сумму зарядов положительно и отрицательно заряженных ионов.

 

 

Рис. 2. Молекулярно-кинетическая схема движения ионов в электролите

Одновременное и противополярное движение заряженных частиц в электролитической «ванне» позволяет сделать вывод, что молекулярно-кинетические скорости будут различаться между собой и суммироваться. Таким образом, мощности для положительно и отрицательно заряженных ионов распределяется между собой следующим образом:

  (10)

Поскольку кинетическую энергию движения любого предмета можно измерить в калориях, точно также и в джоулях (исходя из закона Фарадея 1 В = 1,6∙10-19 Дж/эл. заряд; 1 А = 6,35∙1018 эл. заряд за секунду, и закона сохранения заряда) обозначим схему замещения.

На рис. 2 представленная схема движения ионов является математической моделью, по которой можно рассчитать все электрические параметры по данным прямых измерений. Сегодня используются данные косвенных измерений, что приводит к значительным погрешностям, в ряде случаев они достигают 100-200%.

Приведем анализ экспериментального исследования и превращений параметров электрического сопротивления под воздействием изменения уровня постоянной или выпрямленной ЭДС по модели (рис. 2, 3).

В табл. 1 приведены данные, полученные путем измерения пяти фиксированных режимов источника катодной защиты.

Рис. 3. Зависимости проводимостей положительно и отрицательно заряженных частиц от уровня приложенного напряжения

Таблица 1

Данные для пяти фиксированных напряжений от Umin до Umax

Напряжение U (B)

5

10

15

18

25

Ток I (А)

3

5

8

10

12

Мощность Р (Вт)

43,75

118,75

250

325

550

По экспериментальным данным табл. 1, определим сопротивления R и проводимости g для каждого режима. Данные расчета сведем в табл. 2.

По данным g+ и g- можно для каждого фиксированного падения напряжения построить зависимости g+, g- = f(U) (рис. 3).

Таблица 2

Расчетные данные сопротивлений и проводимостей

Сопротивление R (Oм), Р/I² = R

4,86

4,75

3,9

3,25

3,8

Проводимость g (Ом-1) = U²/P)

1,75

1,187

1,11

1,0

0,88

Проводимость g+ (Ом-1)

0,6

0,5

0,53

0,55

0,48

Проводимость g- (Ом-1)

1,15

0,67

0,58

0,44

0,4

Как видим, точка пересечения кривых определяет эффективную полноту катодной защиты и необходимое напряжение источника.

Список литературы

1. Эйнштейн А., Лауб. О пондероматорных силах, действующих в электромагнитном поле на покоящиеся тела. 1908 г. Т.1, с 126-134 / В книге Эйнштейн А. Собрание научных трудов. - М.: Наука, 1965.

2. Палашов В.В. Закономерность изменения углов преломления потоков электромагнитной энергии заряженных ионов, движущихся встречно под воздействием ЭДС в грунтовых средах. Открытие. Диплом №403. - Москва. Рег. №506. 2010 г.



ВОСПИТАНИЕ ДЕТЕЙ В СЕМЬЕ

ВОСПИТАНИЕ ДЕТЕЙ В СЕМЬЕ Статья в формате PDF 108 KB...

20 04 2024 2:46:46

ПАТТЕРНЫ ВНУТРИ ПАТТЕРНОВ

ПАТТЕРНЫ ВНУТРИ ПАТТЕРНОВ Статья в формате PDF 87 KB...

18 04 2024 14:15:40

ПЯТИЗВЕННЫЙ РЕДУКТОР ПОВОРОТНОГО ДВИЖЕНИЯ

ПЯТИЗВЕННЫЙ РЕДУКТОР ПОВОРОТНОГО ДВИЖЕНИЯ Статья в формате PDF 303 KB...

14 04 2024 11:27:30

НОВАЯ МОДЕЛЬ ОЦЕНКИ КАРДИОВАСКУЛЯРНОГО РИСКА НА ОСНОВЕ ЭПИДЕМИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ В ЦИРКУМПОЛЯРНОМ РЕГИОНЕ

НОВАЯ МОДЕЛЬ ОЦЕНКИ КАРДИОВАСКУЛЯРНОГО РИСКА НА ОСНОВЕ ЭПИДЕМИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ В ЦИРКУМПОЛЯРНОМ РЕГИОНЕ Уровень кардиодеструктивных заболеваний в циркумполярном регионе имеет тенденцию к устойчивому росту. На основании результатов эпидемиологических исследований и количественной оценки факторов риска развития патологии разработана региональная модель оценки кардиоваскулярного риска для населения Ямало-Ненецкого автономного округа, учитывающая факторы питания. При составлении модели использован метод расчета весовых показателей. Шкала включает показатели распространенности классических кардиоваскулярных факторов риска, а также показатели дополнительных алиментарных рисков: артериальная гипертония, избыточная масса тела и ожирение, уровень холестерина в крови, уровень потрeбления белка и пищевого натрия. Использование модели позволяет более эффективно решать вопросы прогноза, индивидуализировать программу профилактики. ...

12 04 2024 23:45:34

НОВЫЕ ИНГРЕДИЕНТЫ ДЛЯ ФУНКЦИОНАЛЬНЫХ ИЗДЕЛИЙ

НОВЫЕ ИНГРЕДИЕНТЫ ДЛЯ ФУНКЦИОНАЛЬНЫХ ИЗДЕЛИЙ Статья в формате PDF 112 KB...

29 03 2024 4:58:10

СОЛОВЬЁВ ВИТАЛИЙ НИКОЛАЕВИЧ

СОЛОВЬЁВ ВИТАЛИЙ НИКОЛАЕВИЧ Статья в формате PDF 90 KB...

26 03 2024 6:57:37

ЭКОЛОГИЧЕСКИЕ И АГРОЛАНДШАФТНЫЕ ОСОБЕННОСТИ ЗОНАЛЬНЫХ СИСТЕМ ЗЕМЛЕДЕЛИЯ В УСЛОВИЯХ КАЗАХСТАНА

ЭКОЛОГИЧЕСКИЕ И АГРОЛАНДШАФТНЫЕ ОСОБЕННОСТИ ЗОНАЛЬНЫХ СИСТЕМ ЗЕМЛЕДЕЛИЯ В УСЛОВИЯХ КАЗАХСТАНА Приведены результаты научных исследований сохранения и улучшения экологического состояния агроландшафтов Казахстана. Проведены экспериментальные работы с учетом дифференциации зональных систем земледелия. Исследования показали, что оценка в эрозионных агроландшафтах адаптивности основной обработки богарных светло-каштановых почв на уровне мезо – и микроландшафтных условий, вспашка более эффективна в северных и восточных экспозиций склонов, где плотность пахотного слоя была в среднем за вегетацию зерновых культур в основном на 0,02–0,04 г/см3 меньше по сравнению с плоскорезной обработкой. На склонах южной и западной экспозиций наоборот плоскорезная обработка способствовала снижению уплотненности почвы, на 0,03–0,05 г/см3 и повышению ее противоэрозионной устойчивости в 1,2–1,5 раза. На склонах северной и восточной экспозиции вспашка обеспечивает более эффективную борьбу с сорняками, а плоскорезная – на южных и западных склонах более высокое и равномерное накопление снега и рациональное использование влаги. Важнейшим звеном улучшения экологии почв является оптимизация севооборотов. В статье предлагается построить севооборот по количеству оставляемого в почве органического вещества, каждым предшественником. Для совершенствования севооборотов рекомендуется сидерация, уплотненные посевы, размещение многолетних и однолетних трав, применения органических удобрений и др. ...

25 03 2024 1:47:49

Американский студенческий сленг начала 21 века

Американский студенческий сленг начала 21 века Статья в формате PDF 249 KB...

24 03 2024 6:29:37

ПРОИСХОЖДЕНИЕ АРАНЖИРОВКИ И ЕЕ РОЛЬ В МУЗЫКЕ

ПРОИСХОЖДЕНИЕ АРАНЖИРОВКИ И ЕЕ РОЛЬ В МУЗЫКЕ Статья в формате PDF 155 KB...

23 03 2024 15:44:54

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::